Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
\(A=sin^210+sin^220+sin^230+sin^280+sin^270+sin^260=sin^210+sin^220+sin^230+cos^210+cos^220+cos^230=1+1+1=3\)\(B=\left(1+tan^2\alpha\right)\left(1-sin^2\alpha\right)+\left(1+cot^2\alpha\right)\left(1-cos^2\alpha\right)=\dfrac{1}{cos^2\alpha}.cos^2\alpha+\dfrac{1}{sin^2\alpha}.sin^2\alpha=1+1=2\)
Dựng góc nhọn xOy có \(\widehat{xOy}=\alpha\)
Trên tia Oy lấy điểm B bất kỳ, kẻ BA⊥Ox
\(tan\alpha=\dfrac{AB}{OA}\)
\(cot\alpha=\dfrac{OA}{AB}\)
\(\Rightarrow tan\alpha.cot\alpha=\dfrac{AB}{OA}.\dfrac{OA}{AB}=1\)
\(\tan\alpha=\dfrac{đối}{kề}\)
\(\cot\alpha=\dfrac{kề}{đối}\)
Do đó: \(\tan\alpha\cdot\cot\alpha=1\)
b: \(\dfrac{AB\cdot BC}{2}\cdot sinB\)
\(=\dfrac{AB\cdot BC}{2}\cdot\dfrac{AC}{BC}=\dfrac{AB\cdot AC}{2}\)
\(=S_{ABC}\)
a: Xét ΔABD vuông tại A có tan ABD=AD/AB
Xét ΔCBA có BD là phân giác
nên AD/AB=CD/BC
=>\(\dfrac{AD}{AB}=\dfrac{CD}{BC}=\dfrac{AD+CD}{AB+BC}=\dfrac{AC}{AB+BC}\)
=>\(tan\left(ABD\right)=\dfrac{AC}{AB+BC}\)
tui rất thích lượng giác:
a) = s2 + 2s.c +c2 +s2- 2s.c + c2 =1+1=2
b) = s.c(s/c + c/s) = s.c(s2 + c2) / s.c = 1
.............................bài nào cx dễ
( k có việc j khó, chỉ sợ lòng k bền....)
Biểu thức\(=\tan^2\alpha.\cos^2\alpha+\tan^2\alpha.\cos^2\alpha.\cot^2\alpha\)\(=\frac{sin^2\alpha}{\cos^2\alpha}.\cos^2\alpha+\cos^2\alpha=\sin^2\alpha+\cos^2\alpha=1\)