Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Áp dụng định lý Pytago trong tam giác ABH vuông tại H. Ta có:
Trong tam giác vuông ABC vuông tại A có AH là đường cao
Áp dụng định lý Py-ta-go cho tam giác vuông ABC ta có:
Vậy AC = 7,5 (cm); BC = 12,5 (cm)
Đáp án cần chọn là: B
mình chỉ biết bài 3 thôi. hai bài kia cx làm được nhưng ngại trình bày
Ta có : BC = BH +HC = 4 + 9 = 13 (cm)
Theo hệ thức lượng trong tam giác vuông ta có:
- AC2 = BC * HC
AC2 = 13 * 9 = 117
AC = \(3\sqrt{13}\)(cm)
- AB2 =BH * BC
AB2 = 13 * 4 = 52
AB = \(2\sqrt{13}\)(CM)
Xét ΔABC vuông tại A có AH ⊥ BC.
⇒ AH² = CH . BH (Hệ thức lượng trong tam giác vuông)
⇒ BH = AH² : CH
⇒ BH = 10² : 5
⇒ BH = 100 : 5
⇒ BH = 20 (cm)
Ta có: BC = BH + CH = 20 +5 = 25 (cm)
Áp dụng hệ thức lượng trong tam giác vuông vào ΔABC vuông tại A có AH là đường cao ứng với cạnh huyền BC, ta được:
\(AH^2=BH\cdot CH\)
\(\Leftrightarrow BH=10^2:5=20\left(cm\right)\)
Ta có: BH+CH=BC(H nằm giữa B và C)
nên BC=20+5=25(cm)
ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)
... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)
\(\Rightarrow AB=9cm\)
b, gọi BD là x .Áp dụng tc đường phân giác ta có:
\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)
\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)
Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)
.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)
\(\Rightarrow BH=5,4cm\)
do AB<AC nên H nằm giữa B và D
\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)
... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)
\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)
Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!
Mấy cái chỗ .... thì bạn tự điền thêm vào nha!
k cho mk là được rồi! mk ko cần thẻ! cám ơn!
ta có \(\sin B=\frac{AC}{BC}=\frac{12}{15}=\frac{4}{5}\Rightarrow\widehat{B}\approx53^o\)
\(\Rightarrow\widehat{C}=90^o-\widehat{B}\approx37^o\)
... Py-ta-go \(\Rightarrow AB^2=BC^2-AC^2=15^2-12^2=9^2\)
\(\Rightarrow AB=9cm\)
b, gọi BD là x .Áp dụng tc đường phân giác ta có:
\(\frac{AB}{AC}=\frac{BD}{CD}=\frac{x}{BC-x}\)(x<15)
\(\Rightarrow\frac{9}{12}=\frac{x}{15-x}\Rightarrow x=\frac{45}{7}cm\)
Hệ thức lượng \(\Rightarrow AB.AC=BC.AH\Rightarrow AH=\frac{AC.AB}{BC}\)\(\Rightarrow AH=\frac{9.12}{15}=7,2\left(cm\right)\)
.... Py-ta-go: \(\Rightarrow BH^2=AB^2-AH^2=9^2-7,2^2=29,16\)
\(\Rightarrow BH=5,4cm\)
do AB<AC nên H nằm giữa B và D
\(\Rightarrow HD=BD-BH=\frac{45}{7}-5,4=\frac{36}{35}\left(cm\right)\)
... py ta go..\(AD^2=HD^2+AH^2=\left(\frac{36}{35}\right)^2+7,2^2\)
\(\Rightarrow AD^2=\frac{2592}{49}\Rightarrow AD=\frac{36\sqrt{2}}{7}cm\)
Bạn tự kết luận nha! hồi nãy mk đã gửi một bài chi tiết hết sức rồi mà olm lại báo có lỗi xảy ra nên ko gửi lên được!
Lần 2 nó lại bảo phải kiểm duyệt trước khi hiển thị! Ức chế hết sức!!! chương trình này có lẽ lỗi nặng?
Mấy cái chỗ .... thì bạn tự điền thêm vào nha!
k cho mk là được rồi! mk ko cần thẻ! cám ơn!
Trong tam giác vuông ABH:
\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=10.tan45^0=10\)
\(cosB=\dfrac{BH}{AB}\Rightarrow AB=\dfrac{BH}{cosB}=\dfrac{10}{cos45^0}=10\sqrt{2}\)
Do tam giác ABH vuông tại H \(\Rightarrow\widehat{BAH}=90^0-\widehat{B}=45^0\)
\(\Rightarrow\widehat{CAH}=\widehat{A}-\widehat{BAH}=75^0-45^0=30^0\)
Trong tam giác vuông ACH:
\(cos\widehat{CAH}=\dfrac{AH}{AC}\Rightarrow AC=\dfrac{AH}{cos\widehat{CAH}}=\dfrac{10}{cos30^0}=\dfrac{20\sqrt{3}}{3}\)
AD là phân giác góc A \(\Rightarrow\widehat{CAD}=\dfrac{1}{2}\widehat{A}=\dfrac{75^0}{2}=37^030'\)
\(\Rightarrow\widehat{DAH}=\widehat{CAD}-\widehat{CAH}=37^030'-30^0=7^030'\)
Trong tam giác vuông ADH:
\(cos\widehat{DAH}=\dfrac{AH}{AD}\Rightarrow AD=\dfrac{AH}{cos\widehat{DAH}}=\dfrac{10}{cos\left(7^030'\right)}\approx10,1\)
a: BC=5
b: AH=2,4
BH=1,8
\(S_{ABH}=\dfrac{AH\cdot BH}{2}=\dfrac{1.8\cdot2.4}{2}=2.16\left(đvdt\right)\)
\(B=45^o\Rightarrow C=90-45=45^o\)
\(BH=10cm;HC=15cm\)
\(BC=HB+HC=10+15=25\left(cm\right)\)
\(SinB=\dfrac{AC}{BC}\Rightarrow AC=BC.SinB=25.Sin45^o=\dfrac{25\sqrt[]{2}}{2}\left(cm\right)\)
\(SinC=\dfrac{AB}{BC}\Rightarrow AB=BC.SinC=25.Sin45^o=\dfrac{25\sqrt[]{2}}{2}\left(cm\right)\)
\(AH^2=HB.HC=10.15=150\)
\(\Rightarrow AH=\sqrt[]{150}=5\sqrt[]{6}\left(cm\right)\)