K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

7 tháng 7 2020

P Q R H K E F

a) Xét tam giác PQH và tam giác PRH có : 

\(PQ=PR\left(gt\right)\)

\(PH\)chung

\(QH=RH\left(gt\right)\)

\(=>\) Tam giác PQH = tam giác PRH (c-c-c)

b, Ta có tam giác PQR cân tại P và có đường trung tuyến PH

Suy ra PH là đường trung tuyến đồng thời là đường cao 

\(=>PH\perp QR\)

c,Ta có : \(\hept{\begin{cases}QH=RH\\KH=PH\end{cases}}\)

\(=>\)Tứ giác PQKR là hình bình hành 

\(=>\)\(RK=PQ\)

Mà theo giả thiết : \(PQ=PR\)

Suy ra : \(PR=PK\)

3 tháng 5 2018

chó nóng

3 tháng 5 2018

có ai giúp mình vs mai mình thi học kì zồi T_T

30 tháng 4 2019

* Vẽ hình:

- Vẽ tam giác PQR có PQ = PR = 5cm, QR = 6cm.

+ Vẽ đoạn thẳng QR = 6cm.

+ Vẽ cung tròn tâm Q và cung tròn tâm R bán kính 5cm. Hai cung tròn này cắt nhau tại P.

+ Nối PQ và PR ta được tam giác cần vẽ.

- Vẽ điểm M : Vẽ cung tròn tâm P bán kính 4,5cm cắt QR (nếu có) tại M.

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Vậy ta có thể vẽ được 2 điểm M trên đường thẳng QR để PM = 4.5cm

* Kẻ đường cao PH của ΔPQR

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

Xét hai tam giác vuông tại H: ΔPHQ và ΔPHR có

PH chung

PQ = PR ( = 5cm)

⇒ ΔPHQ = ΔPHR (cạnh huyền – cạnh góc vuông)

⇒ HQ = HR (Hai cạnh tương ứng)

Mà HQ + HR = QR = 6 cm

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7

+ ΔPHR vuông tại H có PR2= PH2+ HR2(định lí Py – ta – go)

⇒ PH2= PR2– HR2= 52– 32= 16 ⇒ PH = 4cm .

Đường vuông góc PH = 4cm là đường ngắn nhất trong các đường kẻ P đến đường thẳng QR.

Vậy chắc chắn có đường xiên PM = 4,5cm (vì PM = 4,5cm > 4cm) kẻ từ P đến đường thẳng QR.

+ Lại có : HM, HR lần lượt là hình chiếu của các đường xiên PM, PR trên đường thẳng QR.

Mà PM < PR ⇒ HM < HR = HQ (đường xiên nào lớn hơn thì hình chiếu lớn hơn).

⇒ M nằm giữa H và Q hoặc H và R

⇒ M nằm trên cạnh QP và có hai điểm M như vậy.

Giải bài 14 trang 60 SGK Toán 7 Tập 2 | Giải toán lớp 7