Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: ΔPIM vuông tại I
=>IP^2+IM^2=MP^2
=>IM^2=10^2-6^2=64
=>IM=8(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên PI*PN=PM^2
=>PN=10^2/6=50/3(cm)
Xét ΔMNP vuông tại M có MI là đường cao
nên MI^2=IN*IP
=>IN=8^2/6=32/3(cm)
Xét ΔMNP vuông tại M có sin MNP=MP/PN
=10:50/3=3/5
=>góc MNP=37 độ
b: C=MN+NP+MP
=10+40/3+50/3
=10+90/3
=10+30
=40(cm)
c: Xét ΔIMP vuông tại I có IK là đường cao
nên IK*PM=IP*IM
=>IK*10=6*8=48
=>IK=4,8(cm)
KG là đường phân giác của M K P ^ => M G G P = M K K P (1)
KJ là đường phân giác của M K N ^ => M J J N = M K K N (2)
Chứng minh được: KN = KP (3)
Từ (1); (2); (3) => M G G P = M J J N => Đpcm
Xét tứ giác ADHE có
\(\widehat{ADH}=\widehat{AEH}=\widehat{DAE}=90^0\)
=>ADHE là hình chữ nhật
ΔHDB vuông tại D có DK là trung tuyến
nên KH=KB=KD
ΔHEC vuông tại E có EI là trung tuyến
nên EI=IH=IC
\(\widehat{IED}=\widehat{IEH}+\widehat{DEH}\)
\(=\widehat{IHE}+\widehat{DAH}\)
\(=\widehat{HAB}+\widehat{HBA}=90^0\)
=>IE vuông góc ED(1)
\(\widehat{KDE}=\widehat{KDH}+\widehat{EDH}\)
\(=\widehat{KHD}+\widehat{EAH}=\widehat{HAC}+\widehat{HCA}=90^0\)
=>KD vuông góc DE(2)
Từ (1), (2) suy ra DKIE là hình thang vuông
\(S_{DKIE}=\dfrac{1}{2}\left(DK+EI\right)\cdot ED\)
\(=\dfrac{1}{2}\cdot AH\cdot\left(\dfrac{1}{2}HC+\dfrac{1}{2}HB\right)\)
\(=\dfrac{1}{4}\cdot AH\cdot BC\)
=>\(\dfrac{S_{DKIE}}{S_{ABC}}=\dfrac{1}{4}:\dfrac{1}{2}=\dfrac{1}{2}\)
a: Xét ΔCKA vuông tại K có KI là đường cao ứng với cạnh huyền AC
nên \(CI\cdot CA=CK^2\left(1\right)\)
Xét ΔCKB vuông tại K có KH là đường cao ứng với cạnh huyền BC
nên \(CH\cdot CB=CK^2\left(2\right)\)
Từ (1) và (2) suy ra \(CI\cdot CA=CH\cdot CB\)
`a)` Biết `MN=7cm;NP=25cm`
Xét \(\Delta MNP\) vuông tại `M`, đường cao `MK`
Ta có: \(NP^2=MN^2+MP^2\) (đl Pytago)
\(\Rightarrow25^2=7^2+MP^2\\ \Rightarrow MP^2=25^2-7^2=576\\ \Rightarrow MP=\sqrt{576}=24cm\)
Ta có: \(\dfrac{1}{MK^2}=\dfrac{1}{MN^2}+\dfrac{1}{MP^2}\left(htl\right)\)
\(\Rightarrow\dfrac{1}{MK^2}=\dfrac{1}{7^2}+\dfrac{1}{24^2}\\ \Rightarrow\dfrac{1}{MK^2}=\dfrac{625}{28224}\\ \Rightarrow MK^2=\dfrac{1\cdot28224}{625}\\ \Rightarrow MK=\sqrt{\dfrac{28224}{625}}\\ \Rightarrow MK=6,72cm\)
Ta có: \(MN^2=NK\cdot NP\left(htl\right)\)
\(\Rightarrow7^2=NK\cdot25\\ \Rightarrow NK=\dfrac{7^2}{25}=1,96cm\)
Vậy: \(MP=24cm;MK=6,72cm;NK=1,96cm\)
`b)` \(C/m:MD\cdot MN=ME\cdot MP\)
Xét \(\Delta KMN\) vuông tại `K`
Ta có: \(MK^2=MD\cdot MN\left(htl\right)\left(1\right)\)
Xét \(\Delta KMP\) vuông tại `K`
Ta có: \(MK^2=ME\cdot MP\left(htl\right)\left(2\right)\)
Từ `(1)` và `(2)` \(\Rightarrow MK^2=MK^2\)
\(\Rightarrow MD\cdot MN=ME\cdot MP\left(=MK^2\right)\)
(Câu `c)` tớ chịu :v).