Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
1.Vì các tia phân giác của các góc B và C cắt nhau tại I
\(\Rightarrow\)I là giao của các đường phân giác trong tam giác
\(\Rightarrow\)AI là tia phân giác của góc A
1.
Kẻ: \(ID\perp AB;IE\perp BC;IF\perp AC\)
\(\widehat{IDB}=\widehat{IEB}=90^0\)
\(\widehat{DBI}=\widehat{EIB}\left(gt\right)\)
BI cạnh huyền chung
⇒ ∆IDB = ∆IEB (cạnh huyền, góc nhọn)
Suy ra: ID = IE (hai cạnh tương ứng) (1)
Xét hai tam giác vuông IEC và IFC, ta có ;
\(\widehat{IEC}=\widehat{IFC}=90^0\)
\(\widehat{ECI}=\widehat{FCI}\left(gt\right)\)
CI canh huyền chung
Suy ra: ∆ IEC = ∆IFC (cạnh huyền, góc nhọn)
Suy ra: IE = IF (hai cạnh tương ứng) (2)
Từ (1) và (2) suy ra: ID = IF
Xét hai tam giác vuông IDA và IFA, ta có:
\(\widehat{IDA}=\widehat{IFA}=90^0\)
ID = IF (chứng minh trên)
AI cạnh huyền chung
Suy ra: ∆IDA = ∆IFA (cạnh huyền, cạnh góc vuông)
Suy ra\(\widehat{DAI}=\widehat{FAI}\) (hai góc tương ứng)
Vậy AI là tia phân giác của \(\widehat{A}\)
a.
Xét tam giác IHK và tam giác ECK có:
IHK = ECK (=90)
KH = KC (K là trung điểm của HC)
K1 = K2 (2 góc đối đỉnh)
=> Tam giác IHK = Tam giác ECK (c.g.c) (1)
=> IH = CE (2 cạnh tương ứng) (2)
b.
Tam giác IHK = Tam giác ECK (theo 1)
=> HIK = CEK (2 góc tương ứng) mà 2 góc này nằm ở vị trí so le trong
=> AH // CE
=> AIC = ICE (2 góc so le trong) (3)
IH = CE (theo 2)
mà IH = IA (I là trung điểm của HA)
=> IA = CE (4)
Xét tam giác ACI và tam giác EIC có:
IA = CE (theo 4)
IC là cạnh chung
AIC = ECI (theo 3)
=> Tam giác ACI = Tam giác EIC (c.g.c) (5)
c.
Tam giác ACI = Tam giác EIC (theo 5)
=> AC = EI (2 cạnh tương ứng) (6)
=> ACI = CIE (2 góc tương ứng) mà 2 góc này nằm ở vị trì so le trong
=> IK // AC
Tam giác IHK = Tam giác ECK (theo 1)
=> IK = EK (2 cạnh tương ứng)
=> K là trung điểm của IE
=> IK = EK = 1/2 IE
mà AC = IE (theo 6)
=> IK = 1/2 AC
a) Xét \(\Delta ACI\)và \(\Delta BCI\)có :
\(AC=BC\left(GT\right)\)(1)
\(\widehat{CIA}=\widehat{CIB}=90^o\)(2)
\(CI:\)Cạnh chung (3)
Từ (1) ; (2) và (3)
\(\Rightarrow\Delta ACI=\Delta BCI\left(c-g-c\right)\)
\(\Rightarrow AI=BI\)( cặp cạnh tương ứng )
b) Vì \(AI=BI\)( Câu a)
Mà \(AB=12cm\)
\(\Rightarrow AI=BI=6cm\)
Áp dụng định lí PY-ta-go cho tam giác vuông \(CIA\)có :
\(IA^2+IC^2=AC^2\)
\(\Rightarrow6^2+IC^2=10^2\)
\(\Rightarrow36+IC^2=100\)
\(\Rightarrow IC^2=100-36\)
\(\Rightarrow IC^2=64\)
\(\Rightarrow IC=\sqrt{64}\)
\(\Rightarrow IC=8cm\)
c) Xét \(\Delta\perp AHI\)và \(\Delta\perp BKI\)có :
\(\widehat{A}=\widehat{B}\)( vì tam giác ACB cân ) (1)
\(IA=IB\)( câu a ) (2)
\(\widehat{AHI}=\widehat{BKI}=90^o\)(3)
Từ (1);(2)và (3)
\(\Rightarrow\Delta\perp AHI=\Delta\perp BKI\)( Cạnh huyền - góc nhọn )
\(\Rightarrow HI=IK\)( cặp cạnh tương ứng )
a: Xét ΔAIB vuông tại I và ΔAIC vuông tại I có
AI chung
IB=IC
Do đó: ΔAIB=ΔAIC
a, Ta có △MAB cân tại M => AM=BM(đ/l)=>MI là đường trung trực của AB
=>AI=IB(t/c)
=> góc MAB = góc MBA (đ/l)
Ta có IH vuông góc với AM=> góc IHA=90 độ
Ta có IK vuông góc với MB=> góc IKB = 90 độ
Xét △AHI và △ IBK ta có:
Góc IHA= góc IKB=90 độ(CMT) \
AI=IB(CMT) => △AHI =△ IBK ( cạnh huyền - góc gócMAB=gócMBA(CMT) / nhọn)
b, => IH=IK (2 cạnh tương ứng); => AH=KB (2 cạnh tương ứng)
c, Ta có AM= HM+AH (1)
BM=KM+IK (2)
mà AM=BM (CMT); AH=IK(CMT) (3)
Từ (1), (2), (3) => HM = MK (t/c)
=> △ MHK cân tại M (t/c)