Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
+ Tam giác ABC đều có AD là phân giác, suy ra AD là đường trung tuyến
Khi đó I là giao của hai trung tuyến AD và BE nên I là giao của ba đường trung tuyến trong tam giác ABC
Nên I là trọng tâm của tam giác ABC ⇒ D I = 1 3 A D
AD là đường trung tuyến, suy ra D là trung điểm của BC
G là giao điểm của 2 đường trung tuyến BD và CE
Suy ra : G là trọng tâm tam giác ABC
Suy ra :
GD = 1/3 BD = 1/3 x 24 = 8 ( cm )
GE = 1/3 CE = 1/3 x 45 = 15 ( cm )
Xét tam giác ABC có :
E là trung điểm AB ( trung tuyến CE )
D là trung điểm AC ( trung tuyến BD )
Suy ra : ED là đường trung bình của tam giác ABC
Suy ra ED : = 1/2 x BC = 1/2 x 34 = 17 ( cm )
Vậy GD = 8 cm
GE = 15 cm
ED = 17 cm
Vì tam giác \(ABC\)đều nên trung trực của \(AC\)cũng là trung tuyến của \(AC\)nên \(O\)là trọng tâm của tam giác \(ABC\)
Suy ra \(OA=\frac{2}{3}AM\).
Tam giác \(ABC\)đều nên \(AM\perp BC\).
Theo định lí Pythagore:
\(AC^2=AM^2+MC^2\)
\(\Leftrightarrow AM^2=AC^2-MC^2=10^2-5^2=75\)
\(\Leftrightarrow AM=5\sqrt{3}\left(cm\right)\).
\(OA=\frac{2}{3}AM=\frac{10\sqrt{3}}{3}\left(cm\right)\).
a: Xét ΔNAB có
NM vừa là đường cao, vừa là trung tuyến
nên ΔBAN cân tại N
b: Xét ΔBAC có
M là trung điểm của BA
MN//AC
Do đó: N là trung điểm của BC