K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 9 2019

Câu 18: D

Câu 19: C

Câu 20: B

Câu 21: C

11 tháng 2 2022

18. Chọn D

19. Chọn C

20. Chọn B

21. Chọn C

27 tháng 1 2021

6,5 cm nha nb

HQ
Hà Quang Minh
Giáo viên
8 tháng 9 2023

a) Ta có: \({8^2} + {15^2} = {17^2}\) suy ra \(A{B^2} + A{C^2} = B{C^2}\). Vậy tam giác \(ABC\) vuông tại \(A\)

b) Ta có: \({20^2} + {21^2} = {29^2}\) suy ra \(B{C^2} + A{C^2} = A{B^2}\). Vậy tam giác \(ABC\) vuông tại \(C\)

c) Ta có: \({12^2} + {35^2} = {37^2}\) suy ra \(A{B^2} + B{C^2} = A{C^2}\). Vậy tam giác \(ABC\) vuông tại \(B\)

20 tháng 4 2016

xét        tam giác abc có

18 tháng 12 2020

a) Xét tứ giác AHDE có 

\(\widehat{DAE}=90^0\)(\(\widehat{BAC}=90^0\), D∈AB, E∈AC)

\(\widehat{ADH}=90^0\)(HD⊥AB)

\(\widehat{AEH}=90^0\)(HE⊥AC)

Do đó: AHDE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)

b) Xét ΔCEH vuông tại E có EM là đường trung tuyến ứng với cạnh huyền CH(M là trung điểm của CH)

nên \(EM=\dfrac{CH}{2}\)(Định lí 1 về áp dụng hình chữ nhật vào tam giác vuông)

mà \(MH=CM=\dfrac{CH}{2}\)(M là trung điểm của CH)

nên EM=MH=CM

Xét ΔEMH có ME=MH(cmt)

nen ΔEMH cân tại M(Định nghĩa tam giác cân)

\(\widehat{MEH}=\widehat{MHE}\)

Gọi O là giao điểm của AH và DE

Ta có: AEHD là hình chữ nhật(cmt)

nên hai đường chéo AH và DE cắt nhau tại trung điểm của mỗi đường và bằng nhau(Định lí hình chữ nhật)

mà AH cắt DE tại O

nên O là trung điểm chung của AH và DE

\(AO=OH=\dfrac{AH}{2}\) và \(EO=DO=\dfrac{ED}{2}\)

mà AH=ED(cmt)

nên AO=OH=EO=DO

Xét ΔOHE có OE=OH(cmt)

nên ΔOHE cân tại O(Định nghĩa tam giác cân)

\(\widehat{OEH}=\widehat{OHE}\)(hai góc ở đáy)

Ta có: \(\widehat{MEO}=\widehat{MEH}+\widehat{OEH}\)(tia EH nằm giữa hai tia EM,EO)

mà \(\widehat{MEH}=\widehat{MHE}\)(cmt)

và \(\widehat{OEH}=\widehat{OHE}\)(cmt)

nên \(\widehat{MEO}=\widehat{MHE}+\widehat{OHE}\)

mà \(\widehat{MHE}+\widehat{OHE}=\widehat{MHO}\)(tia HE nằm giữa hai tia HO và HM)

nên \(\widehat{MEO}=\widehat{MHO}\)

\(\Rightarrow\widehat{MED}=\widehat{CHA}\)

mà \(\widehat{CHA}=90^0\)(AH⊥BC)

nên \(\widehat{MED}=90^0\)

Xét ΔMED có \(\widehat{MED}=90^0\)(cmt)

nên ΔMED vuông tại E(Định nghĩa tam giác vuông)

c) Để DE=2EM thì AH=HC(AH=DE và HC=2EM)

Xét ΔAHC vuông tại H có AH=HC(cmt)

nên ΔAHC vuông cân tại H(Định nghĩa tam giác vuông cân)

hay \(\widehat{C}=45^0\)

Vậy: ΔABC phải có thêm điều kiện \(\widehat{C}=45^0\) thì DE=2EM

18 tháng 12 2020

mong mọi người trả lời  hộ em

 

12 tháng 1 2016

\(Ad\) \(Py-ta-go\) \(ta\) \(có:\)

\(5^2+12^2=a^2\)\(a-c.huyền\)

\(\Rightarrow a^2=25+144=169\)

\(\Rightarrow a=13\)

\(\Delta vuông\)

\(\Rightarrow t.tuyến=\frac{1}{2}c.huyền\)

\(\Rightarrow t.tuyến=\frac{c.huyền}{2}=\frac{13}{2}=6,5cm\)