Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a. Áp dụng định lý pitago, ta có:
\(BC^2=AB^2+AC^2\)
\(\Rightarrow AC=\sqrt{10^2-6^2}=\sqrt{64}=8cm\)
\(C_{ABC}=6+8+10=24cm\)
b. xét tam giác vuông ABD và tam giác vuông BDM, có:
B : góc chung
AD: cạnh chung
Vậy tam giác vuông ABD = tam giác vuông BDM ( cạnh huyền - góc nhọn )
a: BC=10cm
C=AB+BC+AC=6+8+10=24(cm)
b: Xét ΔABD vuông tại A và ΔHBD vuông tại H có
BD chung
\(\widehat{ABD}=\widehat{HBD}\)
Do đó: ΔABD=ΔHBD
c: Ta có: ΔABD=ΔHBD
nên DA=DH
mà DH<DC
nên DA<DC
Câu a tui bít,vì hai tam giác đó bằng nhau nên chu vi bằng các cạnh cộng lại:5+8+7 là chu vi tam giác MNP
\(d\Delta MNP=d\Delta ABC=25cm;NP=BC=7cm\)
\(\Rightarrow AB+AC=25-7=18cm\)
\(\Rightarrow AB=\left(18+2\right):2=10cm;AC=\left(18-2\right):2=8cm\)
Vậy AB=10cm; AC=8cm; BC=7cm
AB = KN = 10 (cm)
AC = KP = 5 (cm)
Chu vi tam giác KNP :
10 + 5 + 8 = 23 (cm)
=> D
D