Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét ΔABD và ΔAMD có
AB=AM
góc BAD=góc MAD
AD chung
Do đó; ΔABD=ΔAMD
b: Xét ΔDBN và ΔDMC có
góc DBN=góc DMC
DB=DM
góc BDN=góc MDC
Do đó; ΔDBN=ΔDMC
=>BN=MC
c: Xét ΔANC có AB/BN=AM/MC
nên BM//CN
Lời giải:
Xét tam giác $BAM$ và $CAM$ có:
$BA=CA$ (giả thiết)
$AM$ chung
$MB=MC$ (giả thiết)
$\Rightarrow \triangle BAM=\triangle CAM$ (c.c.c)
$\Rightarrow \widehat{BAM}=\widehat{CAM}$
Mà $AM$ nằm giữa $AB,AC$ nên $AM$ là phân giác của $\widehat{BAC}$
B1:
a) Xét ΔABM và ΔCDM có:a) Xét ΔABM và ΔCDM có:
AM = MC (vì M là trung điểm của AC)AM = MC (vì M là trung điểm của AC)
BM = MD (theo giả thiết - cách vẽ)BM = MD (theo giả thiết - cách vẽ)
Góc AMB = góc CMD ( đối đỉnh)Góc AMB = góc CMD ( đối đỉnh)
⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng⇒ ΔABM = ΔCDM (c-g-c) (2 góc tương ứng
b) ⇒ góc ABM = góc MDCb) ⇒ góc ABM = góc MDC
Mà 2 góc này ở vị trí so le trongMà 2 góc này ở vị trí so le trong
⇒ AB // CD (ĐPCM)⇒ AB // CD (ĐPCM)
c) Theo bài ra ta có:c) Theo bài ra ta có:
CD = CNCD = CN
Mà CD = AB ( vì ΔABM = ΔCDM)Mà CD = AB ( vì ΔABM = ΔCDM)
⇒ AB = CN⇒ AB = CN
Xét tam giác ABC và tam giác CNB có:Xét tam giác ABC và tam giác CNB có:
BC chungBC chung
AB = CN (CMT)AB = CN (CMT)
góc ABC = góc NCB ( vì AB // CN )góc ABC = góc NCB ( vì AB // CN )
⇒ ΔABC = ΔNCB⇒ ΔABC = ΔNCB
⇒ AC // BN ( 2 cạnh tương ứng)
b: Xét tứ giác ABCD có
M là trung điểm của AC
M là trung điểm của BD
Do đó: ABCD là hình bình hành
Suy ra: AB//CD
Ta có AB=AC
=> △ABC cân tại A => góc ABc=góc ACB hay góc FBC=góc ECB
ta có BE⊥AC=> góc CEB=90 độ
CF⊥AB => góc BFC = 90 độ
Xét △BFC (góc BFC = 90 độ)và△CEB(góc CEB= 90 độ )có
góc FBC =góc ECB (chứng minh trên )
BC là cạnh huyền chung
=> △BFC= △CEB(cạnh huyền -góc nhọn)
Vậy △BFC= △CEB
Trên mặt phẳng bờ AB không chứa C lấy N sao cho BN = BM, AN=MC
Xét \(\Delta CMB\)và \(\Delta ANB\)có:
BN=BM
AN=MC
AB=BC
Suy ra: \(\Delta CMB\)=\(\Delta ANB\)(c.c.c)
\(\Rightarrow\widehat{NBA}=\widehat{CBM}\)
Mà \(\widehat{CBM}+\widehat{MBA}=60^0\)
Suy ra \(\widehat{MBN}=\widehat{NBA}+\widehat{MBA}=60^0\)
Vì BN=BM nên tam giác MBN cân
Suy ra tam giác BMN đều
\(\Rightarrow\widehat{NMB}=60^0\)
Vì MA:MB:MC=3:4:5
\(\Rightarrow\)MA:MN:AN=3:4:5
Suy ra tam giác MAN vuông tại M(định lí Pitago đảo)
\(\Rightarrow\widehat{AMN}=90^0\)
\(\Rightarrow\widehat{AMB}=\widehat{AMN}+\widehat{NMB}=90^0+60^0=150^0\)
Vậy \(\widehat{ABM}=150^0\)