K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

24 tháng 4 2017

bai41

Ta có tgy =2/5 = 0,4 ⇒ tgy= tg21048′ ⇒ y= 21048′

x = 900 – 21048′ = 68012′

x – y = 68012′ -21048′ = 46024′

24 tháng 4 2017

tgy=25=0,4tgy=25=0,4 nên y ≈ 21°48’

Do đó: x = 90° - y ≈ 68°12’

Vậy: x – y ≈ 68°12’ - 21°48’ ≈ 46°24’



19 tháng 11 2017

Ta có:

Để học tốt Toán 9 | Giải bài tập Toán 9

Suy ra  y   =   21 ° 48 '

= >   x   =   90 °   -   y   =   68 ° 12 '  (x, y là hai góc phụ nhau)

Vậy  x   –   y   =   68 ° 12 '   -   21 ° 48 '   =   46 ° 24 '

a: xét (O) có

ΔCAB nội tiếp

AB là đường kính

Do đó: ΔCAB vuông tại C

b: Xét ΔCAB vuông tại C có \(cosBAC=\frac{AC}{AB}=\frac12\)

nên \(\hat{BAC}=60^0\)

ΔACB vuông tại C

=>\(CA^2+CB^2=AB^2\)

=>\(CB^2=AB^2-AC^2=\left(2R\right)^2-R^2=4R^2-R^2=3R^2\)

=>\(CB=R\sqrt3\)

c: Xét (O) có

MC,MB là các tiếp tuyến

Do đó: MC=MB

=>M nằm trên đường trung trực của CB(1)

ta có: OC=OB

=>O nằm trên đường trung trực của CB(2)

Từ (1),(2) suy ra MO là đường trung trực của CB

=>MO⊥CB

mà CA⊥CB

nên CA//OM

d: Gọi I là giao điểm của MA và CH, K là giao điểm của AC và MB

ΔACB vuông tại C

=>CA⊥CB tại C

=>CB⊥AK tại C

=>ΔKCB vuông tại C

Ta có: \(\hat{MCB}+\hat{MCK}=\hat{KCB}=90^0\)

\(\hat{MBC}+\hat{MKC}=90^0\) (ΔKCB vuông tại C)

\(\hat{MBC}=\hat{MCB}\) (ΔMBC cân tại M)

nên \(\hat{MCK}=\hat{MKC}\)

=>MC=MK

mà MC=MB

nên MB=MK(3)

ta có: KB⊥BA

CH⊥BA

DO đó: KB//CH

Xét ΔAMK có CI//MK

nên \(\frac{CI}{MK}=\frac{AI}{AM}\left(4\right)\)

Xét ΔAMB có IH//MB

nên \(\frac{IH}{MB}=\frac{AI}{AM}\) (5)

từ (3),(4),(5) suy ra CI=IH

=>I là trung điểm của CH

=>MA đi qua trung điểm I của CH

1 tháng 9 2017

MK KO HIỂU LẮM