Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
A B C F M E
a)ta có góc FAE=góc MEA=góc MFA=90o
=>AEMF là hình chữ nhật
b) Xét \(\Delta\)FMC vuông tại F và \(\Delta\)FMA vuông tại F
MF chung
AM=CM=\(\frac{BC}{2}\)(AM là trung tuyến của BC)
Suy ra :\(\Delta FMC=\Delta FMA\)(cạnh huyền - cạnh góc vuông)
=>CF=AF (2 cạnh tương ứng)
=>F là trung điểm CA
mà F lại là trung điểm của MN
=>MANC là hình bình hành
ta lại có CA vuông góc với MN
=>MANC là hình thoi
c)
ta có MC=MB ( AM là trung tuyến của BC)
ME song song AC (ME song song FA)
=> AE=EB
=>MF=AE(AEMF là hình vuông)
mà MF=NF(N là điểm đối xứng của M qua F)
AE=EB(chưng minh trên)
=>MN=AB
Mà MN=AC( MANC là hình vuông)
nên : AB=AC
=> tam giác ABC vuông cân tại A
Vậy tam giác ABC cần vuông cân tại A thì AEMF,MANC là hinh vuông
BẠN TỰ VẼ HÌNH NHÉ MÌNH GIẢI THÔI NHA ^^
Giải
a) Xét tam giác ODE, có:
IK là đường trung bình(I t/điểm OD và K trung điểm OE)
=>IK // DE
Vậy:IKED là hình thang
b) Ta có IAKO là hcn (A=AIO=AKO=90 độ)
=>AK=IO và AK // IO.
Mà D,I,O thẳng hàng và DI=IO (D đxứng O qua I)
=>AK//DI và AK=DI
=>AKDI là hbh.
c)Ta có tam giác ABC có góc A=90 độ và Góc C=30 độ
=>góc B=60 độ
Và tam giác ABC vuông ở A và AM là đường trung tuyến
=> AM =1/2 BC =>AM=BM
=>Tam giác ABM cân ở M. Và Góc B= 60độ (cmt)
=> Tam giác ABM đều => AB=AM=BM
Vậy chu vi tam giác ABC= 3 x 7=21 (cm)
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi
a: Xét tứ giác ADME có
\(\widehat{ADM}=\widehat{AEM}=\widehat{EAD}=90^0\)
Do đó: ADME là hình chữ nhật
Xét ΔABC có
M là trung điểm của BC
MD//AC
Do đó: D là trung điểm của AB
Xét ΔABC có
M là trung điểm của BC
ME//AB
Do đó: E là trung điểm của AC
Xét tứ giác CMDE có
DM//CE
DM=CE
Do đó: CMDE là hình bình hành
b: Xét tứ giác AMCF có
E là trung điểm của AC
E là trung điểm của MF
Do đó: AMCF là hình bình hành
mà MA=MC
nên AMCF là hình thoi