K
Khách
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Các câu hỏi dưới đây có thể giống với câu hỏi trên

11 tháng 8
a: Xét ΔAED vuông tại E và ΔADB vuông tại D có
\(\hat{EAD}\) chung
Do đó: ΔAED~ΔADB
=>\(\frac{AE}{AD}=\frac{AD}{AB}\)
=>\(AE\cdot AB=AD^2\left(1\right)\)
Xét ΔAFD vuông tại F và ΔADC vuông tại D có
\(\hat{FAD}\) chung
Do đó: ΔAFD~ΔADC
=>\(\frac{AF}{AD}=\frac{AD}{AC}\)
=>\(AF\cdot AC=AD^2\left(2\right)\)
Từ (1),(2) suy ra \(AE\cdot AB=AF\cdot AC\)
DE và CA cùng vuông góc với AB, do đó
DE // AC.
Theo định lí Ta-lét, ta có:
Tương tự, ta có: DF // AB, do đó:
Cộng các vế tương ứng của (1) và (2), ta có:
Tổng
không thay đổi vì luôn có giá trị bằng 1.
Vậy : Khi độ dài cạnh góc vuông AB, AC của tam giác vuông ABC thay đổi thì tổng
luôn luôn không thay đổi. Tổng đó luôn có giá trị bằng 1.