K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a) Áp dụng định lí pytago vào ΔABC vuông tại A, ta được

\(AB^2+AC^2=BC^2\)

hay \(AC^2=BC^2-AB^2=50^2-30^2=1600\)

\(AC=\sqrt{1600}=40cm\)

Ta có: ΔABC vuông tại A(gt)

\(S_{ABC}=AB\cdot AC=30\cdot40=1200cm^2\)

Vậy: Diện tích tam giác ABC là 1200cm2

b)

*Chứng minh \(AH\cdot BC=AB\cdot AC\)

Ta có: AH là đường cao ứng với cạnh BC của ΔABC(gt)

\(S_{ABC}=AH\cdot BC\)(1)

Ta có: ΔABC vuông tại A(gt)

\(S_{ABC}=AB\cdot AC\)(2)

Từ (1) và (2) suy ra \(AH\cdot BC=AB\cdot AC\)(đpcm)

*Tính AH

Ta có: \(S_{ABC}=AH\cdot BC\)(cmt)

\(S_{ABC}=1200cm^2\)

nên \(AH\cdot BC=1200cm^2\)

hay \(AH\cdot50=1200cm^2\)

\(AH=\frac{1200}{50}=24cm\)

Vậy: AH=24cm

c)

*Tính \(S_{AHB}\)

Áp dụng định lí pytago vào ΔAHB vuông tại H, ta được

\(AH^2+HB^2=AB^2\)

hay \(HB^2=AB^2-AH^2=30^2-24^2=324\)

\(HB=\sqrt{324}=18cm\)

Ta có: ΔAHB vuông tại H(AH⊥BC)

nên \(S_{AHB}=AH\cdot HB=24\cdot18=432cm^2\)

Vậy: Diện tích tam giác AHB là 432cm2

*Tính \(S_{AHC}\)

Ta có: CH+HB=BC(do C,H,B thẳng hàng)

hay CH=BC-HB-50-18=32cm

Ta có: ΔAHC vuông tại H(AH⊥BC)

nên \(S_{AHC}=CH\cdot AH=32\cdot24=768cm^2\)

Vậy: Diện tích tam giác AHC là 768cm2

19 tháng 4 2021

A B C 8 15 H M N 8

a, Xét tam giác ABC vuông tại A, đường cao AH 

\(AB^2+AC^2=BC^2\Rightarrow BC^2=64+225=289\Rightarrow BC=17\)cm 

Xét tam giác AHC và tam giác BAC ta có : 

^AHC = ^BAC = 900

^C _ chung 

Vậy tam giác AHC ~ tam giác BAC ( g.g )

\(\Rightarrow\frac{AH}{AB}=\frac{AC}{BC}\)( tỉ số đồng dạng ) 

\(\Rightarrow AH.BC=AB.AC\Rightarrow AH=\frac{AB.AC}{BC}=\frac{8.15}{17}=\frac{120}{17}\)cm 

b, Vì MH vuông AB 

NA vuông AB 

=> MH // NA tương tự ta có : MH // AN 

=> tứ giác AMNH là hình bình hành 

mà ^HNA = 900 ; ^BAC = 900 ; ^HMA = 900

=> tứ giác AMHN là hình vuông 

19 tháng 4 2021

xin lỗi mình nhầm, => tứ giác AMNH là hình chữ nhật