Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a: Xét (O) có
BA,BE là tiếp tuyến
=>BA=BE
mà OA=OE
nên OB là trung trực của AE
=>OB vuông góc AE
=>BH*BO=BA^2
ΔABC vuông tại A có AD vuông góc BC
nên BD*BC=BA^2
=>BH*BO=BD*BC
b: BH*BO=BD/BC
=>BH/BC=BD/BO
=>góc BHD=góc BCO
=>góc DHO+góc DCO=180 độ
=>DHOC nội tiếp
A B C O E F H D I P Q K R M
a) Chứng minh AE.AC=AH.AD:
Xét \(\Delta\)AEH và \(\Delta\)ADC: ^AEH=^ADC(=900); ^DAC chung => \(\Delta\)AEH ~ \(\Delta\)ADC (g.g)
\(\Rightarrow\frac{AE}{AD}=\frac{AH}{AC}\Rightarrow AE.AC=AH.AD\)(đpcm).
b) Chứng minh P;H;Q thẳng hàng:
Ta nối 2 điểm P và Q với điểm H.
Xét đường tròn (I): Có AQ là tiếp tuyến; AEC là cát tuyến => ^AQE=^ACQ
Xét \(\Delta\)AEQ và \(\Delta\)AQC: ^QAC chung; ^AQE=^ACQ => \(\Delta\)AEQ ~ \(\Delta\)AQC (g.g)
\(\Rightarrow\frac{AQ}{AC}=\frac{AE}{AQ}\Rightarrow AQ^2=AE.AC\)
Lại có: \(AE.AC=AH.AD\Rightarrow AQ^2=AH.AD\Rightarrow\frac{AQ}{AH}=\frac{AD}{AQ}\)
Xét \(\Delta\)AHQ và \(\Delta\)AQD: ^DAQ chung; \(\frac{AQ}{AH}=\frac{AD}{AQ}\)=> \(\Delta\)AHQ ~ \(\Delta\)AQD (c.g.c)
\(\Rightarrow\)^AQH=^ADQ (1)
Ta thấy: AP và AQ là 2 tiếp tuyến của (I) => Tứ giác APIQ nội tiếp đường tròn (Tâm là trung điểm AI)
Dễ có tứ giác ADIQ nội tiếp đường tròn tâm là trung điểm AI (Do ^ADI=^AQI=900)
Từ đó suy ra: 5 điểm A;P;D;I;Q cùng thuộc 1 đường tròn => Tứ giác APDQ nội tiếp dường tròn
=> ^ADQ=^APQ (Cùng chắn cung AQ) (2)
Từ (1) và (2) => ^AQH=^APQ. Mà \(\Delta\)PAQ cân đỉnh A => ^APQ=^AQP => ^AQH=^AQP
Dễ thấy 2 tia QH và QP nằm cùng phía so với mặt phẳng bờ là AQ
=> P;H;Q là 2 điểm thẳng hàng (đpcm).
c) Chứng minh HP vuông với AK và KH vuông với AI:
Ở phần c) Mình sửa điểm P thành điểm R vì phần b) đã có điểm P rồi.
+) Ta có: Tứ giác BFEC nội tiếp (I) => ^ECB=^BFK hay ^KCE=^KFB
=> \(\Delta\)KBF ~ \(\Delta\)KEC (g.g) => \(\frac{KB}{KE}=\frac{KF}{KC}\Rightarrow KB.KC=KE.KF\)(3)
Xét đường tròn (O) có 2 cát tuyến KRA và KBC, ta có ngay tỉ số: \(\frac{KR}{KC}=\frac{KB}{KA}\Rightarrow KB.KC=KR.KA\)(4)
Từ (3) và (4) => \(KE.KF=KR.KA\)\(\Rightarrow\frac{KR}{KE}=\frac{KF}{KA}\)
=> \(\Delta\)KRF ~ \(\Delta\)KEA (c.g.c) => ^KRF=^KEA. Mà ^KRF+^FRA=1800
=> ^KEA+^FRA=1800 hay ^FRA+^FEA=1800 => Tứ giác ARFE nội tiếp đường tròn.
Mà tứ giác AFHE nội tiếp đường tròn => 5 điểm A;R;F;H;E cùng thuộc 1 đường tròn
=> Tứ giác ARFH nội tiếp đường tròn => ^ARH=^AFH.
Lại có: ^AFH=900 => ^ARH=900 => HR vuông góc AR hay HR vuông góc AK (ddpcm0.
+) Gọi giao điểm của tia RH và (O) là M => ^ARM=^ARH=900
Tứ giác ARBM nội tiếp đường trong nên ^ARM=^ABM (=900) => AB vuông góc BM
Lại thấy CF vuông góc AB => CF//BM hay CH//BM
Tứ giác ABMC nội tiếp đường tròn => ^ABM+^ACM=1800 => ^ACM=900
Tương tự ta c/m được: CM//BH
Xét tứ giác BHCM: CH//BM; CM//BH (cmt) => Tứ giác BHCM là hình bình hành
Do I là trung điểm BC nên H.I.M thẳng hàng => R;H;I thẳng hàng và IR vuông góc AK
Xét \(\Delta\)KAI: IR vuông AK; AD vuông KI; IR cắt AD tại H => H là trực tâm của \(\Delta\)KAI
=> KH vuông góc với AI (đpcm).
d) Chứng minh BC;EF;PQ đồng quy:
Vì EF cắt BC tại điểm K nên ta sẽ chứng minh K;P;Q là 3 điểm thẳng hàng.
Dễ có: Tứ giác APDI nội tiếp đường tròn => ^DPI=^DAI.
Mà ^DAI=^IKH (Cùng phụ góc AIK) => ^DPI=^IKH hay ^DPI=^DKP
Xét \(\Delta\)KPD: ^DKP + ^KDP+^KPD = 1800 => ^DPI + ^KDP + ^KPD = 1800
=> ^KPI + ^KDP = 1800 (5)
Để ý rằng tứ giác PDIQ nội tiếp đường tròn => ^IQP=^KDP.
Mà \(\Delta\)PIQ cân đỉnh I => ^IQP=^IPQ => ^KDP=^IPQ (6)
Từ (5) và (6) => ^KPI + ^IPQ = 1800 => ^KPQ = 1800 => 3 điểm K;P;Q thẳng hàng.
Qua đó, ta suy ra được BC;EF;PQ đồng quy (đpcm).
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
a: Xét (O) có
ΔACB nội tiếp
AB là đường kính
Do đó: ΔACB vuông tại C
Xét (O) có
DC là tiếp tuyến
DA là tiếp tuyến
Do đó: DC=DA
Xét (O) có
EC là tiếp tuyến
EB là tiếp tuyến
Do đó: EC=EB
Ta có: DC+CE=DE
nên DE=DA+EB
b: Xét tứ giác ADCO có \(\widehat{DAO}+\widehat{DCO}=180^0\)
nên ADCO là tứ giác nội tiếp
=>\(\widehat{ADO}=\widehat{ACO}\)
mà \(\widehat{ACO}=\widehat{CAB}\)
nên \(\widehat{ADO}=\widehat{CAB}\)
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Với câu c
Kẻ BC cắt DA tại một điểm là P
Ta có : DO//CD(...)
AO=OB(...)
==> DP=DA
Ta lại có: DA//EB. ==> IA/IE=AD/BE
Mà AD=CD; BE=CE(Tính chất 2 tt cắt nhau)
==>IA/IE=CD/CE ==> CI//AD. ==> CK//DA
. CI//PD. ==> CI/PD=BI/BD
. IK//DA ==> IK/DA=BI/BD
==> CI/PD=IK/DA
Mà PD=DA(..) ==>CI=IK
A B O C E F D I H K M J
a) Theo tính chất hai tiếp tuyến cắt nhau, ta có AE = EC; BF = FC
Vậy nên AE + BF = EC + CF = EF
b) Xét tam giác vuông BAD có AC là đường cao nên áp dụng hệ thức lượng trong tam giác, ta có:
\(DA^2=DC.DB\)
c) Ta thấy rằng \(\Delta DCA\sim\Delta DAB\Rightarrow\frac{DA}{DB}=\frac{CA}{AB}\)
Lại có AB = 2OB; AC = 2AH.
Vậy nên \(\frac{DA}{DB}=\frac{2.AH}{2.OB}=\frac{AH}{OB}\)
Ta cũng có \(\widehat{DAH}=\widehat{DBO}\) (Cùng phụ với góc \(\widehat{BCA}\) )
Nên \(\Delta DAH\sim\Delta DBO\Rightarrow\widehat{DHA}=\widehat{DOB}\)
Mà \(\widehat{DHA}=\widehat{IHK}\) nên \(\widehat{DOB}=\widehat{IHK}\)
Xét tứ giác HIOK có \(\widehat{DOB}=\widehat{IHK}\) nên HIOK là tứ giác nội tiếp. Vậy thì \(\widehat{HIK}=\widehat{HOK}\)
\(\widehat{HIK}+\widehat{HAK}=\widehat{HOK}+\widehat{HAK}=90^o\)
\(\Rightarrow\widehat{AKI}=90^o\Rightarrow IK\perp AB\)
d) Từ A kẻ AJ song song với BD cắt BF tại J.
Khi đó ta thấy ngay ADBJ là hình bình hành. Vậy thì DJ giao với AB tại trung điểm mỗi đường hay O là trung điểm của AB và DJ.
Vậy ta có D, O , J thẳng hàng.
Xét tam giác AFJ có \(AB\perp FJ\)
\(FO\perp BC\) mà BC // AJ nên \(FO\perp AJ\)
Vậy thì O là trực tâm tam giác AFJ hay \(JO\perp AF\) (1)
Xét tam giác AIO có \(IK\perp AO;OH\perp AI\Rightarrow\) M là trực tâm tam giác.
Vậy thì \(AM\perp IO\) (2)
Từ (1) và (2) suy ra A, M , F thẳng hàng.
Em tham khảo tại link dưới đây nhé.
Câu hỏi của My Trấn - Toán lớp 9 - Học toán với OnlineMath
Với câu c, khi đã có IK // AD thì vận dụng Ta let ta có ngay \(\frac{IC}{AD}=\frac{IK}{AD}\Rightarrow IC=IK\)
Gọi I là giao của AE và CD
AE vuông góc KC
CD vuông góc AK
=>I là trực tâm của ΔACK
=>KI vuông góc AC
=>KI//AB
góc BHD=góc OHC
=>90 độ-góc BHD=90 độ-góc OHC
góc DHI=góc CHI
=>HI là phân giác của góc CHD
HB vuông góc HI
=>HB là phân giác góc ngoài của ΔCHD
BD/BC=HD/HC
=>ID/IC=BD/BC
=>BC/IC=BD/ID
KI//AB//CD
=>AB/KI=AB/ID=BC/IC=AF/IF
ΔKIF đồng dạng vói ΔBAF
=>góc KFI=góc BFA
=>B,K,F thẳng hàng