Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Xét \(\Delta ABC\) vuông tại \(A\left(gt\right)\) có:
\(AB^2+AC^2=BC^2\) (định lí Py - ta - go).
=> \(AB^2+AC^2=51^2\)
=> \(AB^2+AC^2=2601\left(cm\right).\)
Ta có: \(\frac{AB}{AC}=\frac{8}{15}.\)
=> \(\frac{AB}{8}=\frac{AC}{15}.\)
=> \(\frac{AB^2}{64}=\frac{AC^2}{225}\) và \(AB^2+AC^2=2601\left(cm\right).\)
Áp dụng tính chất dãy tỉ số bằng nhau ta được:
\(\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{2601}{289}=9.\)
\(\Rightarrow\left\{{}\begin{matrix}\frac{AB^2}{64}=9\Rightarrow AB^2=576\Rightarrow AB=24\left(cm\right)\left(vìAB>0\right)\\\frac{AC^2}{225}=9\Rightarrow AC^2=2025\Rightarrow AC=45\left(cm\right)\left(vìAC>0\right)\end{matrix}\right.\)
Vậy \(AB=24\left(cm\right);AC=45\left(cm\right).\)
Chúc bạn học tốt!
a: AB/8=AC/15=k
=>AB=8k; AC=15k
Theo đề, ta có: \(AB^2+AC^2=BC^2\)
\(\Leftrightarrow289k^2=51^2\)
=>k=3
=>AB=24cm; AC=45cm
b: AB=4/3AC
mà AB-AC=14
nên 4/3AC-AC=14
=>AC=42cm
=>AB=56(cm)
\(BC=\sqrt{42^2+56^2}=70\left(cm\right)\)
a) Áp dụng tính chất dãy tỉ số bằng nhau: \(\frac{AB}{8}=\frac{AC}{15}\Rightarrow\frac{AB^2}{64}=\frac{AC^2}{225}=\frac{AB^2+AC^2}{64+225}=\frac{51^2}{289}\)
\(\Rightarrow\frac{AB}{8}=\frac{AC}{15}=\frac{51}{17}\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
b) \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=300\left(cm^2\right)\)
A B C
Xét tam giác ABC vuông tại A theo định lí Py-ta-go ta đc
AB2+AC2=BC2=2601(1)
Lại có\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB^2}{AC^2}=\frac{64}{225}\)
\(\Rightarrow AC^2=\frac{AB^2.225}{64}\)
Thay vào (1) ta đc
\(AB^2+\frac{AB^2.225}{64}=2601\)
\(\Rightarrow\frac{AB^2.289}{64}=2601\Rightarrow AB^2=576\)
\(\Rightarrow\hept{\begin{cases}AB=\sqrt{576}=24\left(cm\right)\\AC^2=BC^2-AB^2=2025\end{cases}}\)
\(\Rightarrow\hept{\begin{cases}AB=24\left(cm\right)\\AC=45\left(cm\right)\end{cases}}\)
Vậy ........
b, ta có \(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)
tk mk nhé
Bài 3:
\(\widehat{xAC}=\dfrac{180^0-80^0}{2}=50^0\)
\(\Leftrightarrow\widehat{xAC}=\widehat{ACB}\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ax//BC
Bài 15:
\(\widehat{ABH}+\widehat{A}=90^0\)
\(\widehat{ACK}+\widehat{A}=90^0\)
Do đó: \(\widehat{ABH}=\widehat{ACK}\)
Lời giải:
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow \frac{AB}{8}=\frac{AC}{15}\).
Đặt \(\frac{AB}{8}=\frac{AC}{15}=k(k>0)\Rightarrow AB=8k, AC=15k\)
Vì $ABC$ là tam giác vuông tại $A$ nên áp dụng định lý Pitago ta có:
\(AB^2+AC^2=BC^2\)
\(\Leftrightarrow (8k)^2+(15k)^2=51^2\)
\(\Leftrightarrow 289k^2=2601\Rightarrow k=3\)
\(\Rightarrow AB=8k=24(cm); AC=15k=45(cm)\)
b)
\(S_{ABC}=\frac{AB.AC}{2}=\frac{24.45}{2}=540(cm^2)\)
a) Theo bài ra, ta có:
\(\frac{AB}{AC}=\frac{8}{15}\Rightarrow\frac{AB}{8}=\frac{AC}{15}=k\Rightarrow\left\{{}\begin{matrix}AB=8k\\AC=15k\end{matrix}\right.\)
Áp dụng định lý Pytago vào △ABC vuông tại A, ta có:
\(BC^2=AB^2+AC^2\Rightarrow51^2=\left(8k\right)^2+\left(15k\right)^2=64k^2+225k^2=289k^2\Rightarrow2601=289k^2\Rightarrow k^2=9\Rightarrow k=3\left(k>0\right)\)\(\Rightarrow\left\{{}\begin{matrix}AB=8.k=8.3=24\left(cm\right)\\AC=15.k=15.3=45\left(cm\right)\end{matrix}\right.\)
b)Ta có:
S△ABC=\(\frac{AB.AC}{2}=\frac{24.45}{2}=540\left(cm^2\right)\)