Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét Δ BDF và Δ ACD có: góc B = góc A ( vì cùng bằng 900 )
BF = AD ( vì cùng bằng CE )
BD = AC ( gt )
Nên Δ BDF = Δ ACD (c.g.c)
b) Vì Δ BDF =Δ ACD (cmt) → DF = DC ( hai cạnh tương ứng ) (1)
và góc ACD = góc BDF ( hai góc tương ứng )
Ta có: góc ADC = 1800 - góc A - góc ACD ( tổng 3 góc của tam giác)
và góc ADC = 1800 - góc FDC - góc BDF ( kề bù )
Mà : góc ACD = góc BDF ( cmt) → góc FDC = góc A = 900 (2)
Từ (1) và (2) , ta có: DF = CD và góc FDC = 900
→ tam giác CDF là tam giác vuông cân
P/s: Đây là lần đầu tiên mình làm toán trên HOC24 nên có gì sai sót, mong các bạn bỏ qua!
A B C D E F
Xét △ABC và △AED có
AB=AE(gt)
BAC =EAD( đối đỉnh)
AC=AD(gt)
Vậy △ABC=△AED(c-g-c)