K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 9 2021

Tam giác ABD vuông tại D có \(\cos\widehat{A}=\cos60^0=\dfrac{AD}{AB}=\dfrac{1}{2}\)

Tam giác AEC vuông tại E có \(\cos\widehat{A}=\cos60^0=\dfrac{AE}{AC}=\dfrac{1}{2}\)

Ta có \(\left\{{}\begin{matrix}\dfrac{AD}{AB}=\dfrac{AE}{AC}\left(=\dfrac{1}{2}\right)\\\widehat{A}.chung\end{matrix}\right.\Rightarrow\Delta ADE\sim\Delta ABC\left(c.g.c\right)\)

\(\Rightarrow\dfrac{DE}{BC}=\dfrac{AD}{AB}=\dfrac{1}{2}\\ \Rightarrow2DE=BC\)

30 tháng 9 2021

Bạn tự vẽ hình

Đặt \(AB=x\)

Xét \(\Delta DAB\) vuông tại D, ta có:

\(\cos A=\dfrac{AD}{AB}\) (tỉ số lượng giác)

\(\Rightarrow AD=AB.\cos A=x.\cos60^o=0,5x\)

Xét \(\Delta ADB\) và \(\Delta AEC\), ta có:

\(\left\{{}\begin{matrix}\widehat{A}chung\\\widehat{ABD}=\widehat{ACE\left(2gocphunhau\right)}\end{matrix}\right.\) 
\(\Rightarrow\Delta ADB\sim\Delta AEC\left(g.g\right)\)

Xét \(\Delta ABC\) và \(\Delta ADE\), ta có:

\(\left\{{}\begin{matrix}\widehat{A}chung\\\dfrac{AB}{AC}=\dfrac{AD}{AE}\left(\Delta ABD\sim\Delta ADE\right)\end{matrix}\right.\)

\(\Rightarrow\Delta ABC\sim\Delta ADE\left(c.g.c\right)\\ \Rightarrow\dfrac{AB}{AD}=\dfrac{BC}{DE}\\ \Rightarrow\dfrac{x}{0,5x}=\dfrac{BC}{DE}\\ \Rightarrow BC=\dfrac{DE.x}{0,5x}=2DE\)

 

 

Xét tứ giác BEDC có

góc BEC=góc BDC=90 độ

=>BEDC là tứ giác nội tiếp

=>góc AED=góc ACB

Xét ΔAED và ΔACB có

góc AED=góc ACB

góc A chung

=>ΔAED đồng dạng với ΔACB

=>S AED/S ACB=(AE/AC)^2=(cos60)^2=1/4

=>S AED=1/4*S ACB

Câu 1: 

Xét ΔABD vuông tại D và ΔACE vuông tại E có

góc EAC chung

Do đó: ΔABD\(\sim\)ΔACE

Suy ra: AD/AE=AB/AC

hay AD/AB=AE/AC

Xét ΔADE và ΔABC có

AD/AB=AE/AC

góc DAE chung

Do đó: ΔADE\(\sim\)ΔABC

Suy ra: \(\dfrac{DE}{BC}=\dfrac{AD}{AB}=\cos60^0=\dfrac{1}{2}\)

=>DE=1/2BC

Kẻ Ax là tiếp tuyến tại A với (O).

Có: xABˆ=ACBˆ(=12sđAB⌢)

Xét ΔvABDΔvABD, có:

BACˆBAC^: chung;

⇒ΔvABD∼ΔvACE(gn)⇒ΔvABD∼ΔvACE(gn)

⇒ABAD=AEAC⇒ABAD=AEAC

mà BACˆBAC^ chung

⇒ΔADE∼ΔABC(cgc)⇒ΔADE∼ΔABC(cgc)

⇒AEDˆ=ACBˆ=xABˆ⇒AED^=ACB^=xAB^(ở vị trí SLT)

⇒Ax//DE

mà Ax⊥OA NÊN DE⊥OA

Ta có: AM là đường cao thứ 3( đi qua trực tâm H)

Xét ΔBMHΔBMH và ΔBDCΔBDC có:

BMHˆ=BDCˆ(=900)BMH^=BDC^(=900)

BˆB^ chung

⇒ΔBMH≈ΔBDC(g−g)⇒ΔBMH≈ΔBDC(g−g)

⇒BMBD=BHBC⇒BMBD=BHBC⇔BD.BH=BM.BC(1)⇔BD.BH=BM.BC(1)

Xét ΔCMHΔCMH và ΔCEBΔCEB có:

CMHˆ=CEBˆ(=900)CMH^=CEB^(=900)

CˆC^ chung

⇒ΔCMH=ΔCEB(g−g)⇒ΔCMH=ΔCEB(g−g)

⇒CMCH=CECB⇔CH.CE=BC.CM(2)⇒CMCH=CECB⇔CH.CE=BC.CM(2)

Cộng (1) và (2) vế theo vế, ta được:

BD.BH+CH.CE=BM.BC+BC.CMBD.BH+CH.CE=BM.BC+BC.CM

⇒BD.BH+CH.CE=BC.(BM+CM)=BC2(đpcm)⇒BD.BH+CH.CE=BC.(BM+CM)

=BC2(đpcm)

28 tháng 6 2021

a)Xét ADB và tam giác AEC ta có:

`hat{AEC}=hat{ADB}=90^o`(gt)

`hat{A}` chung

`=>Delta ADB~Delta AEC(gg)`

b)Vì `Delta ADB~Delta AEC(gg)`

`=>(AB)/(AC)=(AE)/(AD)`

`=>DeltaADE~Delta ABC(cgc)`

c)

a) Xét ΔADB vuông tại D và ΔAEC vuông tại E có

\(\widehat{A}\) chung

Do đó: ΔADB∼ΔAEC(g-g)

b) Ta có: ΔADB∼ΔAEC(cmt)

nên \(\dfrac{AD}{AE}=\dfrac{AB}{AC}\)

hay \(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)

Xét ΔADE và ΔABC có

\(\dfrac{AD}{AB}=\dfrac{AE}{AC}\)(cmt)

\(\widehat{A}\) chung

Do đó: ΔADE∼ΔABC(c-g-c)