K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 7 2017

Ta có AB < AC, mà AC = BG nên AB < BG. Do đó ^AGB < ^GAB, mà ^AGB = ^HAC (câu a) nên ^HAC < ^GAB (1).

Tam giác AGH cân tại A, đường trung tuyến AM => ^GAM = ^HAM (2).

Từ (1) và (2) => ^BAM = ^GAM - ^GAB < ^HAM - ^HAC = ^MAC.

27 tháng 7 2017

c) Từ câu a => tam giác AGH cân tại A, đường trung tuyến AM đồng thời là đường cao nên AM vuông góc GH.

Hai đường cao BE, CF cắt nhau tại O nên O là trực tâm của tam giác ABC. Do đó AO vuông góc BC.

AM cắt BC tại K, ta thấy ^OAM = 90 độ - ^AKB; ^BNG = 90 độ - ^MKN; hai góc AKB và MIN đối đỉnh với nhau nên ^OAM = ^BNG.

Ý sau đợi mình suy nghĩ ^^^

27 tháng 3 2017

Mọi người tk mình đi mình đang bị âm nè!!!!!!

Ai tk mình mình tk lại nha !!!

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

BAC+ABE=90            BAC+ACF=90    

=> ABE=ACF

=> 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

b)Theo a có:Tam giác AGB= Tam giác HAC

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  => AG vuông góc với AH (ĐPCM)

c) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)

18 tháng 3 2020

Câu hỏi này mà là linh tinh hả bạn( è)

14 tháng 2 2022

a) Xét tam giác ABE vuông tại E và tam giác ACF vuông tại F có:

\(\hept{\begin{cases}BAC+ABE=90\\BAC+ACF=90\end{cases}}\)  => ABE=ACF

 => 180-ABE=180-ACF    =>ABG=HCA

Xét tam giác AGB và tam giác HAC có:

AB=HC (gt)

ABG=HCA (CMT)

GB=AC (gt)

=> Tam giác AGB= Tam giác HAC (c.g.c) (ĐPCM)

=>AG=HA (hai góc tương ứng )  => Tam giác AGH cân tại A (1)

=> GAB=AHC (hai góc tương ứng)

Xét tam giác AFH vuông tại F có :

FAH+AHC=90 (định lí tổng 3 goác 1 tam giác )

=> FAH+GAB=90 (vì GAB=AHC cmt)

=>GAH=90  (2)  Từ (1) và (2) suy ra: AGH vuông cân tại A (ĐPCM)

b) 1)Theo a, có: Tam giác AGB= Tam giác HAC

=> AG=HA ( hai cạnh tương ứng)

=> Tam giác AGH cân tại A

Mà M là trung điểm của GH   => AM là trung tuyến đồng thời là đường cao 

=> AM vuông góc với GH 

=> AMN=90    =>Tam giác MIN vuông tại M

=>MIN+IMN+MNI=180 (định lí tổng ba góc 1 tam giác)

=>MNI=180-90-MIN=90-MIN (1)

Gọi giao điểm của AO và BC là K, giao điểm của AM và BC là I

Vì O là giao điểm hai đường vuông góc BE và CF của tam giác ABC nên AO là đường vuông góc thứ ba của tam giác này

=> AKN=90   => Tam giác AKI vuông tại K

=> IAK+AKI+AIK=180

=>IAK=180-90-AIK=90-AIK (2)

Từ (1) và (2) có: MNI=90-MIN, IAK=90-AIK

Mà MIN và AIK đối đỉnh => MNI=IAK   =>BNG=OAM (ĐPCM)

2) Ta có AB < AC mà AC = BG                             

=> AB < BG                                                           

=>AGB < GAB mà AGB = HAC (câu a)                     

=>HAC < GAB (1)

Tam giác AGH cân tại A, đường trung tuyến AM       

=> GAM = HAM (2).

Từ (1) và (2) => BAM = GAM - GAB < HAM - HAC = MAC (ĐPCM)

 

27 tháng 3 2017

A B C E F O G H 1 2 5 3 1 4 2 3 4 5

30 tháng 3 2017

sao không có điểm M và N

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:   a) \(\Delta ABK=\Delta BDC\)   b)\(CD\perp BK\)và \(BE\perp CK\)    c) Ba đường thẳng AH, BE, CD đồng quyBài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao...
Đọc tiếp

Bài 1: Cho \(\Delta ABC\),đường cao AH. Trên nửa mặt phẳng  bờ BC có chứa điểm A lấy 2 điểm D và E sao cho \(\Delta ABK\)và \(\Delta ACE\)vuông cân tại B và C. Trên tia đối của tia AH lấy điểm K sao cho AK=BC. Chứng minh rằng:

   a) \(\Delta ABK=\Delta BDC\)

   b)\(CD\perp BK\)và \(BE\perp CK\)

    c) Ba đường thẳng AH, BE, CD đồng quy

Bài 2: Cho \(\Delta ABC\) vuông tại A. Trên cạnh AC lấy điểm D sao cho \(\widehat{ABC}=3\widehat{ABD}\),trên canh AB lấy diểm E sao cho \(\widehat{ACB}=3\widehat{ACE}\).Gọi F là giao điểm của BD và CE. I là giao điểm các đường phân giác của\(\Delta BFC\).

       a)Tính số đo \(\widehat{BFC}\)

       b)Chứng minh \(\Delta BFE=\Delta BFI\)

       c) Chứng minh IDE là tam giác đều

       d)Gọi Cx là tia đối của tia CB, M là giao điểm của FI và BC. Tia phân giác của \(\widehat{FCx}\)cắt tia BF tại K. Chứng minh MK là tia phân giác của \(\widehat{FMC}\)

      e) MK cắt CF tại điểm N. Chứng minh B, I, N thẳng hàng

0