Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
tam giác ABC ~ tam giác DEF theo tỉ số đồng dạng là k = 2/5
thì tam giác DEF ~ tam giác ABC theo tỉ số đồng dạng là 1/k = 5/2
a) Tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng 2/3
=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{2}{3}\)=> \(\frac{AB}{DE}=\frac{BC}{EF}=\frac{AC}{DF}=\frac{AB+BC+AC}{DE+EF+DF}=\frac{2}{3}\)
=> \(\frac{C_{ABC}}{C_{DEF}}=\frac{2}{3}\) (Kí hiệu \(C\) là chu vi) => \(C_{DEF}=\frac{3}{2}.C_{ABC}=\frac{3}{2}.8=12\) cm
b)
+) Dễ có tam giác DEK đồng dạng với tam giác ABH (do góc DEK = ABH; góc DKE = AHB)
=> \(\frac{AB}{DE}=\frac{AH}{DK}\) Mà \(\frac{AB}{DE}=\frac{2}{3}\Rightarrow\frac{AH}{DK}=\frac{2}{3}\)
+) Có : \(\frac{S_{ABC}}{S_{DEF}}=\frac{\frac{1}{2}.AH.BC}{\frac{1}{2}.DK.EF}=\frac{AH}{DK}.\frac{BC}{EF}=\frac{2}{3}.\frac{2}{3}=\frac{4}{9}\)
=> \(S_{ABC}=\frac{4}{9}.S_{DEF}=\frac{4}{9}.27=12\) cm2
*) Tổng quát: Nếu tam giác ABC đồng dạng với tam giác DEF theo tỉ số đồng dạng k
=> \(\frac{C_{ABC}}{C_{DEF}}=k;\frac{S_{ABC}}{S_{DEF}}=k^2\)
Bạn tự chứng minh được DE =1/2 AC ,EF =1/2 AB và DF =1/2 BC
Do đó: Tam giác ABC đồng dạng với tam giác DEF (c.c.c)
b, Tam giác DEF đồng dạng với tam giác ABC theo tỉ số 2 cạnh tương ứng là DE/AC =2 (hoặc EF/AB,DF/BC thì cũng ra 2)
Chúc bạn học tốt.
ΔA1B1C1 đồng dạng với ΔABC theo tỉ số đồng dạng là 3/14
=>A1/AB=3/14
=>AB=14*A1/3
ΔA2B2C2 đồng dạng với ΔABC theo tỉ số đồng dạng là 5/7
=>A2B2/AB=5/7
=>AB=7*A2B2/5
=>14/3*A1B1=7/5*A2B2
=>A1B1/A2B2=7/5:14/3=7/5*3/14=21/70=3/10
=>ΔA1B1C1 đồng dạng với ΔA2B2C2 theo tỉ số là 3/10
Ta có : \(\frac{\Delta_{ABC}}{\Delta_{DÈF}}=\frac{3}{5}\Rightarrow\frac{12}{\Delta_{DEF}}=\frac{3}{5}\)
\(\Rightarrow\Delta_{DEF}=\frac{3}{5}:\frac{1}{12}=\frac{36}{5}=7,2\)cm
Vậy chu vi tam giác DEF là 7,2 m