K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

30 tháng 8 2020

Đối với lp 9 thì cần cm định lí cos vs sin nữa cô ơi

AH
Akai Haruma
Giáo viên
30 tháng 8 2020

Trần Quốc Khanh: ừ ha. Mà định lý sin và cos thì nổi tiếng quá rồi. Cách chứng minh có thể tham khảo trên google =)))

NV
20 tháng 7 2021

undefined

NV
20 tháng 7 2021

Kẻ đường cao AH ứng với BC, đặt \(CH=x\Rightarrow BH=4-x\)

Trong tam giác vuông ABH

\(tanB=\dfrac{AH}{BH}\Rightarrow AH=BH.tanB=\left(4-x\right).tan70^0\)

Trong tam giác vuông ACH: 

\(tanC=\dfrac{AH}{CH}\Rightarrow AH=CH.tanC=x.tan45^0=x\)

\(\Rightarrow\left(4-x\right)tan70^0=x\)

\(\Leftrightarrow\left(1+tan70^0\right)x=4.tan70^0\)

\(\Leftrightarrow x=\dfrac{4tan70^0}{1+tan70^0}\approx2,2\left(cm\right)\)

\(\Rightarrow CH=AH=2,2\left(cm\right)\)

\(AC=\sqrt{CH^2+AH^2}=AH\sqrt{2}\approx3,1\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.2,2.4=4,4\left(cm^2\right)\)

5 tháng 7 2021

Có \(\widehat{B}=180^0-105^0-30^0=45^0\)

Kẻ AH vuông góc với BC

 \(\Rightarrow\Delta ABH\) là tam giác vuông cân tại A

\(\Rightarrow AH=BH\)

Có \(tanC=\dfrac{AH}{HC}\Leftrightarrow HC=\dfrac{AH}{tan30^0}=\sqrt{3}AH\)

\(\Rightarrow BH+CH=AH+\sqrt{3}AH\Leftrightarrow BC=\left(1+\sqrt{3}\right)AH\)\(\Leftrightarrow AH=\dfrac{BC}{1+\sqrt{3}}=\dfrac{2}{1+\sqrt{3}}\)

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}.\dfrac{2}{1+\sqrt{3}}.2=\dfrac{2}{1+\sqrt{3}}\) (cm2)

Vậy...

Bài 2: 

\(\cos60^0=\dfrac{28^2+35^2-BC^2}{2\cdot28\cdot35}\)

\(\Leftrightarrow2009-BC^2=980\)

hay \(BC=7\sqrt{21}\left(cm\right)\)

Câu 1: 

Ta có: \(AB^2=BH\cdot BC\)

\(\Leftrightarrow BH\left(BH+6\right)=16\)

=>BH=2(cm)

BC=BH+CH=8cm

\(AC=\sqrt{8^2-4^2}=4\sqrt{3}\left(cm\right)\)

sin B=AC/BC=căn 3/2

nên góc B=60 độ

=>góc C=30 độ

NV
27 tháng 7 2021

Kẻ đường cao AH ứng với BC

Trong tam giác vuông ACH:

\(sinC=\dfrac{AH}{AC}\Rightarrow AH=AC.sinC\)

\(cosC=\dfrac{CH}{AC}\Rightarrow CH=AC.cosC\)

Trong tam giác vuông ABH:

\(tanB=\dfrac{AH}{BH}\Rightarrow BH=\dfrac{AH}{tanB}=\dfrac{AC.sinC}{tanB}\)

Do đó:

\(S_{ABC}=\dfrac{1}{2}AH.BC=\dfrac{1}{2}AH\left(BH+CH\right)=\dfrac{1}{2}.4,5.sin55^0.\left(\dfrac{4,5.sin55^0}{tan60^0}+4,5.cos55^0\right)\approx8,68\left(cm^2\right)\)

NV
27 tháng 7 2021

undefined

31 tháng 5 2017

Ôn tập Hệ thức lượng trong tam giác vuông