Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Cho Tam giác ABC có điểm M trên cạnh BC. Vẽ tia ME song song với AB (E thuộc AC). F song song với AC (F thuộc AB). Xác định vị trí của điểm M để tia MA là tia phân giác của góc EMF
a) ΔABCΔABC vuông tại A, theo định lí Py-ta-go
Ta có: BC2 = AB2 + AC2
=> BC2 = 82 + 62
BC2 = 100
=> BC = 100−−−√=10(cm)100=10(cm)
b) Xét hai tam giác vuông ABE và ADE có:
AB = AD (gt)
AE: cạnh chung
Vậy: ΔABE=ΔADE(hcgv)ΔABE=ΔADE(hcgv)
Suy ra: BE = DE (hai cạnh tương ứng)
BEAˆ=DEAˆBEA^=DEA^ (hai góc tương ứng)
Ta có: BEAˆ+BECˆ=180oBEA^+BEC^=180o
DEAˆ+DECˆ=180oDEA^+DEC^=180o
Mà BEAˆ=DEAˆBEA^=DEA^ (cmt)
Suy ra: BECˆ=DECˆBEC^=DEC^
Xét hai tam giác BEC và DEC có:
BE = DE (cmt)
BECˆ=DECˆBEC^=DEC^ (cmt)
EC: cạnh chung
Vậy: ΔBEC=ΔDEC(c−g−c)ΔBEC=ΔDEC(c−g−c).
goi DE ∩∩ BC tại I
có AB = AD (gt)
=> CA là đường trung tuyến của ΔΔ ABC
có AE = 2 cm ( gt)
và AC = 6 cm (gt)
=> AE = 1313AC
=> E là trọng tâm của ΔΔ ABC
=> DE là đường trung tuyến còn lại
=> BI = CI ( theo tính chất đường trung tuyến )
=> I là trung điểm của BC
vậy DE đi qua trung điểm của BC
a) do tam giác ABC có \(\widehat{B}>\widehat{C}\)
\(\Rightarrow AB< AC\)
b) câu b đề bài bạn ghi sai hết sạch em kiểm tra lại đề nhé
câu b nè :
xét \(\Delta AMB\)và \(\Delta CMD\):
AM = DM ( gt)
\(\widehat{AMB}=\widehat{CMD}\)( đối đỉnh)
=> CD =
BM = CM ( gt)
=> \(\Delta AMB\)=\(\Delta CMD\)(c.g.c)
=>AB=CD ( 2 cạnh tương ứng)
câu còn lại dễ rồi bạn tự làm đi nehs ( vì mik phải đi học lun về r mik giải típ cho
Hình bn tự vẽ !
a, Ta có :
\(BC=2AB\Leftrightarrow AB=\dfrac{1}{2}BC\\ Mà:\\ MB=MC=\dfrac{1}{2}BC\\ \Rightarrow MB=MC=AB\)
\(\Rightarrow\) Tam giác ABM cân tại B
\(\Rightarrow\widehat{MAB}=\widehat{BMA}\\ \RightarrowĐpcm\)
b, Xét tam giác ABD và tam giác EMD có :
\(\left\{{}\begin{matrix}BD=MD\left(gt\right)\\\widehat{ADB}=\widehat{EDM}\left(haigócđốiđỉnh\right)\\AD=DE\left(gt\right)\end{matrix}\right.\\ \Rightarrow\Delta ABD=\Delta EMD\left(c-g-c\right)\\ \Rightarrow\widehat{DBA}=\widehat{DME}\left(haigóctươngứng\right)\)
Mà hai góc này nằm ở vị trí so le trong
\(\Rightarrow\) ME // AB
a: Xét ΔBAM có BA=BM
nên ΔBAM cân tại B
=>góc BMA=góc BAM
b: Xét tứ giác ABEM có
D la trung điểm chung của AE và BM
nên ABEM là hình bình hành
Suy ra: AB//ME
a) Có: AB=AC
\(\Rightarrow\Delta ABC\) là tam giác cân tại A
\(\Rightarrow\widehat{ABC}=\widehat{ACB}\)
Mà \(\widehat{ABD}+\widehat{ABC}=180^o\) (kề bù)
\(\widehat{ACE}+\widehat{ACB}=180^o\)(kề bù)
\(\Rightarrow\widehat{ABD}=\widehat{ACE}\)
Xét \(\Delta ABD\) và \(\Delta ACE\) có:
\(AB=AC\left(gt\right)\)
\(\widehat{ABD}=\widehat{ACE}\left(cmt\right)\)
\(BD=CE\left(gt\right)\)
\(\Rightarrow\Delta ABD=\Delta ACE\left(c.g.c\right)\)