K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

18 tháng 10 2016

bn có thể tham khảo cách này

Gọi I là giao điểm của các tia phân giác \(\widehat{KBC}\)\(\widehat{KCB}\).Khi đó KI là tia phân giác của \(\widehat{BKC}\)

Mặt khác, tam giác KBC có BKC=120o (vì \(\widehat{KBC}=40^o,\widehat{KCB}=40^o\))

Do đó \(\widehat{BKI}=\widehat{CKI}=\widehat{BKE}=\widehat{CKD}=60^o\)

Xét \(\Delta\)BKI và\(\Delta\)BKE ta có:\(\hept{\begin{cases}\widehat{B_2}=\widehat{B_3}\left(gt\right)\\BK\left(chung\right)\\\widehat{BKI}=\widehat{BKE}=60^o\end{cases}}\)

Suy ra \(\Delta\)BKI=\(\Delta\)BKE (g.c.g) =>KE=KI (1)

Tuong tự ta có KD=KI (2)

Từ (1) và (2) suy ra KE=KD hay \(\Delta\)KED cân tại K

Mặt khác,\(\widehat{EKD}=120^o=\widehat{BKC}\)(đối đỉnh)

Do đó \(\widehat{KED}=\widehat{KDE}=\frac{180^o-120^o}{2}=30^o\)

18 tháng 10 2016

Ta có:

ACB=ACE+BCE

mà ACB=30 độ;ACE=10 độ=>BCE=20 độ

C/m tương tự với góc C ta có CBD=40 độ

Xét tam giác CBK ta có:

KCB + KBC + CKB=180

=> CKB= 180 - KCB - KBC

CKB=180-20-40

      =120 độ

mà CKB đối đỉnh với DKE nên DKE=120 (mình ko viết dc kí hiệu góc nha)

22 tháng 5 2017

tao deo hieu

23 tháng 5 2017

A B C D E M N 1 2 3 1 2 3 1 2

Vẽ 2 tia phân giác của ^MCB và ^MBC, ta được: ^B1=^B2=^B3=1/3^ABC và ^C1=^C2=^C3=1/3^ACB.

Ta có: ^C1=1/3^ACB => ^C2+^C3=1-1/3^ACB=2/3^ACB =>  ^MCB=2/3^ACB (1)

Xét tam giác ABC: ^BAC=900 => ^ABC+^ACB=900 => ^ACB=900-^ABC=900-300=600=> ^ACB=600.

Thay ^ACB=600 vào (1), ta có: ^MCB=2/3.600=400.

Tương tự: ^B1=1/3^ABC => ^B2+^B3=2/3^ABC => ^MBC=2/3^ABC (2)

Thay ^ABC=300 vào (2), ta có: ^MBC=2/3.300=200.

Xét tam giác CMB: ^CMB=1800-(^MCB+^MBC)=1800-(400+200)=1800-600=1200 => ^CMB=1200.

Mà ^CMB=^DME (Đối đỉnh) => ^DME=1200.

N là giao của 2 đường phân giác của ^MBC và ^MCB trong tam giác CMB => MN là phân giác ^CMB.

=> ^M1=^M2=^CMB/2=1200/2=600 (3)

Lại có: ^CDM là góc ngoài của tam giác ADB => ^CDM=^DAB+^ABD=900+1/3ABC.

^ABC=300=>1/3^ABC=100. Thay cào biểu thức trên: ^CDM=900+100=1000.

^C1=1/3^ACB => ^C1=1/3.600=200. Xét tam giác DCM: ^DMC=1800-(^CDM+^C1)=1800-(1000+200)=60=> ^DMC=60(4)

Từ (3) và (4) => ^M1=^M2=^DMC=600, mà ^EMB=^DMC => ^M2=^EMB=600.

Xét tam giác CDM và tam giác CNM có: 

^C1=^C2=1/3^ACB

Cạnh CM chung      => Tam giác CDM = Tam giác CNM (g.c.g)

^DMC=^M1=600

=> DM=NM (2 cạnh tương ứng) (5)

Xét tam giác BEM và tam giác BNM có:

^B1=^B2=1/3^ABC

Cạnh BM chung       => Tam giác BEM = Tam giác BNM (g.c.g) 

^EMB=^M2=600

=> EM=NM (2 cạnh tương ứng) (6)

Từ (5) và (6) => DM=EM=NM => Tam giác MDE cân tại M => ^MDE=^MED=(1800-^DME)/2

Thay ^DME=1200 vào biểu thức trên, ta có: ^MDE=^MED=(1800-1200)/2=600/2=300.

Vậy các góc của tam giác MDE là: ^DME=1200, ^MDE=^MED=300.

Ai hiểu rồi thì k nha.

18 tháng 3 2018

 bạn Đào Minh  Quang ơi ! Bạn Lê Na làm đúng rồi đó ! Mình  chắc chắn luôn 

21 tháng 1 2020

Trả lời : 

Bn tham khảo link này : 

https://olm.vn/hoi-dap/detail/82295835775.html

( vào thống kê của mk sẽ thấy ) 

7 tháng 1 2018

a) Ta có góc A=90 độ=>ABC+ACB=90.Mà góc ABD=1/3ABC và góc ACE=1/3ACB Nên góc ECB+ góc DBC=2/3.90=60 độ . Nên góc BFC=180-60=120.

b)gọi giao điểm giữa BD và EI là G . góc góc BFE=180-BFC=180-120=60 . Mà góc BFI=1/2.120=60 độ (vì FI là tia phân giác)=>góc BFE= góc BFI Nên tam giác BFE=BFI(g-c-g)=>BE=BI<=> tam giác BEI là tam giác đều=>góc BEI=góc BIE. tam giác BEG=tam giác BIG(g-c-g) =>EG=IG và góc BGE=góc BGI mà góc BGI+góc IGD=180 độ và góc BGE+ gócEGD=180 độ =>góc IGD=góc EGD(vì BGE=BGI).tam giác EGD=tam giác IGD(c_g_c) => DE=DI =>tam giác DEI là tam giác cân .xong tu tim goc nao do 60 do chu minh ko bik tim nua thong cam!

19 tháng 1 2018

BEI là tam giác cân mình nhầm