
Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.


1: Các cặp góc so le trong là \(\hat{A_4};\hat{B_2}\) ; \(\hat{A_3};\hat{B_1}\)
Các cặp góc đồng vị là \(\hat{A_1};\hat{B_1}\) ; \(\hat{A_2};\hat{B_2}\) ; \(\hat{A_4};\hat{B_4}\) ; \(\hat{A_3};\hat{B_3}\)
Các cặp góc trong cùng phía là: \(\hat{A_4};\hat{B_1}\) ; \(\hat{A_3};\hat{B_2}\)
2: Ta có: \(\hat{A_2}+\hat{A_3}=180^0\) (hai góc kề bù)
=>\(\hat{A_3}=180^0-60^0=120^0\)
Ta có: \(\hat{A_2}=\hat{A_4}\) (hai góc đối đỉnh)
mà \(\hat{A_2}=60^0\)
nên \(\hat{A_4}=60^0\)
Ta có: \(\hat{A_1}=\hat{A_3}\) (hai góc đối đỉnh)
mà \(\hat{A_3}=120^0\)
nên \(\hat{A_1}=120^0\)
Ta có: \(\hat{B_2}+\hat{B_3}=180^0\) (hai góc kề bù)
=>\(\hat{B_3}=180^0-60^0=120^0\)
ta có: \(\hat{B_1}=\hat{B_3}\) (hai góc đối đỉnh)
mà \(\hat{B_3}=120^0\)
nên \(\hat{B_1}=120^0\)
ta có: \(\hat{B_2}=\hat{B_4}\) (hai góc đối đỉnh)
mà \(\hat{B_2}=60^0\)
nên \(\hat{B_4}=60^0\)

Các cặp góc so le trong là: \(\hat{A_1};\hat{B_7}\) ; \(\hat{A_4};\hat{B_6}\)
Các cặp góc đồng vị là: \(\hat{A_2};\hat{B_6}\) ; \(\hat{A_1};\hat{B_5}\) ; \(\hat{A_3};\hat{B_7}\); \(\hat{A_4};\hat{B_8}\)
Các cặp góc trong cùng phía là: \(\hat{A_1};\hat{B_6}\) ; \(\hat{A_4};\hat{B_7}\)
Các góc ngoài cùng phía là: \(\hat{A_3};\hat{B_8}\) ; \(\hat{A_2};\hat{B_5}\)
Các góc so le ngoài là: \(\hat{A_2};\hat{B_8}\) ; \(\hat{A_3};\hat{B_5}\)

a: ta có: \(\hat{tKy}+\hat{tKm}=180^0\) (hai góc kề bù)
=>\(\hat{tKm}=180^0-150^0=30^0\)
Ta có: \(\hat{tNz}=\hat{tKm}\left(=30^0\right)\)
mà hai góc này là hai góc ở vị trí đồng vị
nên Nz//Km
b: Ta có: \(\hat{tKy}+\hat{tKM}+\hat{yKM}=360^0\)
=>\(\hat{yKM}=360^0-90^0-150^0=120^0\)
Ta có: \(\hat{yKM}=\hat{KMn}\left(=120^0\right)\)
mà hai góc này là hai góc ở vị trí so le trong
nên Ky//Mn

a: Ta có: tia CA nằm giữa hai tia CB và CD
=>\(\hat{BCD}=\hat{BCA}+\hat{DCA}=80^0+30^0=110^0\)
ta có: \(\hat{BCD}+\hat{CBA}=110^0+70^0=180^0\)
mà hai góc này là hai góc ở vị trí trong cùng phía
nên AB//CD
b: AB//CD
=>\(\hat{BAC}=\hat{ACD}\) (hai góc so le trong)
=>\(\hat{BAC}=80^0\)

Xét ΔABD có \(\hat{ADC}\) là góc ngoài tại đỉnh D
nên \(\hat{ADC}=\hat{DAB}+\hat{DBA}>90^0\)
Xét ΔABD có \(\hat{ABD}>90^0\)
nên AD là cạnh lớn nhất trong ΔABD
=>AB<AD(1)
Xét ΔADC có \(\hat{ADC}>90^0\)
nên AC là cạnh lớn nhất trong ΔADC
=>AD<AC(2)
từ (1),(2) suy ra AB<AD<AC