Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 3:
a: Xét ΔAMB và ΔDMC có
MA=MD
\(\widehat{AMB}=\widehat{DMC}\)
MB=MC
Do đó: ΔAMB=ΔDMC
b: Xét tứ giác ABDC có
M là trung điểm của BC
M là trung điểm của AD
Do đó: ABDC là hình bình hành
Suy ra:AC//BD và AC=BD
c: Xét ΔABC và ΔDCB có
AB=DC
\(\widehat{ABC}=\widehat{DCB}\)
BC chung
Do đó: ΔABC=ΔDCB
Suy ra: \(\widehat{BAC}=\widehat{CDB}=90^0\)

a: ta có: \(\hat{A B M} + \hat{A B D} = 18 0^{0}\) (hai góc kề bù)
\(\hat{A C N} + \hat{A C E} = 18 0^{0}\) (hai góc kề bù)
mà \(\hat{A B D} = \hat{A C E} \left(\right. = 9 0^{0} - \hat{B A C} \left.\right)\)
nên \(\hat{A B M} = \hat{N C A}\)
b:
Xét ΔABM và ΔNCA có
AB=NC
\(\hat{A B M} = \hat{N C A}\)
BM=CA
Do đó: ΔABM=ΔNCA
c: ΔABM=ΔNCA
=>AM=NA và \(\hat{B A M} = \hat{C N A} ; \hat{A M B} = \hat{N A C}\)
\(\hat{M A B} + \hat{B A N} = \hat{C N A} + \hat{B A N} = \hat{A N E} + \hat{E A N} = 9 0^{0}\)
=>\(\hat{M A N} = 9 0^{0}\)
=>ΔAMN vuông cân tại A