Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

a: Xét ΔDMC vuông tại M và ΔDMH vuông tại M có
DM chung
MC=MH
Do đó: ΔDMC=ΔDMH
b: ΔDMC=ΔDMH
=>\(\hat{DCM}=\hat{DHM}\)
mà \(\hat{DCM}=\hat{ABC}\) (ΔABC cân tại A)
nên \(\hat{DHM}=\hat{ABC}\)
mà hai góc này là hai góc ở vị trí đồng vị
nên DH//AB
c: Ta có: ΔDMC=ΔDMH
=>DC=DH
Ta có: \(\hat{DHC}+\hat{DHA}=\hat{AHC}=90^0\)
\(\hat{DCH}+\hat{DAH}=90^0\) (ΔAHC vuông tại H)
mà \(\hat{DHC}=\hat{DCH}\) (ΔDHC cân tại D)
nên \(\hat{DHA}=\hat{DAH}\)
=>DH=DA
mà DC=DH
nên DA=DC
=>D là trung điểm của AC
Xét ΔAHB vuông tại H và ΔAHC vuông tại H có
AH chung
AB=AC
Do đó: ΔAHB=ΔAHC
=>HB=HC
=>H là trung điểm của BC
Xét ΔABC có
BD,AH là các đường trung tuyến
BD cắt AH tại G
Do đó: G là trọng tâm của ΔABC
=>\(GA=\frac23AH;GB=\frac23BD\)
Xét ΔGAB có GA+GB>AB
=>\(\frac23\left(AH+BD\right)>AB\)
=>\(AH+BD>\frac32AB\)

Bài 3:
a: Xét ΔAIB và ΔCID có
IA=IC
góc AIB=góc CID
IB=ID
Do đó: ΔAIB=ΔCID
b: Xét tứ giác ABCD có
I là trung điểm chung của AC và BD
nên ABCD là hình bình hành
Suy ra: AD//BC va AD=BC
Bài 6:
a: Xét ΔADB và ΔAEC có
AD=AE
góc A chung
AB=AC
Do đó: ΔADB=ΔAEC
SUy ra: BD=CE
b: Xét ΔEBC và ΔDCB có
EB=DC
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: góc OBC=góc OCB
=>ΔOBC cân tại O
=>OB=OC
=>OE=OD
=>ΔOED cân tại O
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
a) Xét ∆ ABC có :
AH là đường cao đồng thời là trung tuyến
=> ∆ABC cân tại A
b) Vẽ E là trung điểm Kẻ CE
Vì ∆ABC cân tại A
=> AB = AC
=> ABC = ACB
Vì D là trung điểm AB
=> AD = DB
Vì E là trung điểm AC
=> AE = EC
=> AE = EC = AD = DB
Xét ∆ EBC và ∆ DCB ta có :
BC chung
CE = BD ( cmt)
ACB = ABC ( cmt)
=> ∆EBC = ∆DCB (c.g.c)
=> DCB = EBC ( tg ứng)
Mà ABC = ACB
=> ACD = ABE
Vì D là trung điểm AB
=> CD là trung tuyến AB
=> CD là phân giác ACB
Vì E là trung điểm AC
=> BE là trung tuyến AB
=> BE là phân giác ABC
=> DCB = ACD
=> ABE = EBC
=> DCB = 180° - \(\frac{1}{2}\)ACB - \(\frac{1}{2}\)ABC
Mà ACB = ABC = 30°
=> DCB = 180° - \(\frac{60°}{4}\)= 15°
bạn tự vẽ hình
a) tam giác vuông AHC có:
\(\widehat{C}=30^o\Rightarrow AH=\frac{1}{2}.AC\)(trong 1 t/g vuông, cạnh đối diện 1 góc 30 độ = 1 nửa cạnh huyền)
mà \(AH=\frac{1}{2}.BC\Rightarrow BC=AC\Rightarrow\Delta ABC\text{ cân tại }C\)
Vậy ...