K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

14 tháng 12 2017

ABCMDEIK

Ta có: \(\widehat{DAB}=\widehat{MAB}\) , \(\widehat{EAC}=\widehat{MAC}\) (do tính chất đối xứng)

=> \(\widehat{DAE}=2.\widehat{BAC}\) là đại lượng không đổi khi M di chuyển trên BC.

=> \(DE^2=AD^2+AE^2-2.AD.AE.\cos\widehat{DAE}\)

Mà AD = AE = AM

=> \(DE^2=AM^2+AM^2-2.AM.AM.\cos\left(2.\widehat{BAC}\right)\)

               \(=2.AM^2\left[1-\cos2\widehat{BAC}\right]\)

=> DE nhỏ nhất khi AM nhỏ nhất => M là chân đường cao hạ từ A xuống BC

Ta có: M và D đối xứng nhau qua AB

nên AB là đường trung trực của MD

Suy ra: AD=AM

Xét ΔADM có AD=AM(cmt)

nên ΔADM cân tại A(Định nghĩa tam giác cân)

mà AB là đường trung trực ứng với cạnh đáy MD(gt)

nên AB là tia phân giác của \(\widehat{MAD}\)

Ta có: D và N đối xứng nhau qua AC(gt)

nên AC là đường trung trực của DN

Suy ra: AD=AN

Xét ΔADN có AD=AN(cmt)

nên ΔADN cân tại A(Định nghĩa tam giác cân)

mà AC là đường trung trực ứng với cạnh đáy DN(gt)

nên AC là tia phân giác của \(\widehat{DAN}\)

Ta có: \(\widehat{MAN}=\widehat{MAD}+\widehat{NAD}\)

\(=2\cdot\widehat{BAD}+2\cdot\widehat{CAD}\)

\(=2\cdot\widehat{BAC}\)

3 tháng 8 2021

a/ Nối AM

- Do D đối xứng với M qua AB => AB là đường trung trực của MD
=> AD=AM (t/c đường trung trực)

- Do E đối xứng với M qua AC => AC là đường trung trực của ME
=> AE=AM (t/c đường trung trực)

Từ đó suy ra: AD=AE hay A là trung điểm của DE hay D đối xứng với E qua A (đpcm)

b/ Ta có: AM=AE (cmt)

- Tứ giác MAEC có: AE=AM => Tứ giác MAEC là hình thoi => CE // AM 

Tương tự ta cũng có: AM=AD (cmt)

- Tứ giác ADBM có: AM=AD => Tứ giác ADBM là hình thoi => BD // AM

Từ đó suy ra được: BD // CE (đpcm)

c/ Điểm M phải là trung điểm của BC thì DE mới có độ dài nhỏ nhất

30 tháng 7 2017

Bài 2 : c/m là AB+AC<BM+MC nha mấy bạn giúp mk vs 

14 tháng 12 2017

Bạn xem lời giải ở đườn link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn tham khảo ở đây:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem lời giải ở đường link sau nhé

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath

14 tháng 12 2017

Bạn xem ở đây nhé:

Câu hỏi của Nguyễn Thị Thùy - Toán lớp 8 - Học toán với OnlineMath