Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
BC=căn AB^2+AC^2=5cm
AB/BC=3/5
AC/BC=4/5
AB/AC=3/4
AC/AB=4/3
1: Xét ΔABC vuông tại A có
\(BC^2=AB^2+AC^2\)
hay BC=5(cm)
Xét ΔABC vuông tại A có AH là đường cao
nên \(AH\cdot BC=AB\cdot AC\)
hay AH=2,4(cm)
Ta có: \(AB^2\) = BH . BC ; \(AC^2\) = CH . BC
Ta có:
⇒ BH = 49 . 1 = 49
⇒ CH = 576 . 1 = 576
a) Ta có: \(\dfrac{BH}{HC}=\left(\dfrac{AB}{AC}\right)^2\)
\(\Leftrightarrow\dfrac{BH}{HC}=\dfrac{49}{576}\)
hay \(BH=\dfrac{49}{576}HC\)
Ta có: BH+HC=BC(H nằm giữa B và C)
\(\Leftrightarrow HC\cdot\dfrac{625}{576}=625\)
hay HC=576(cm)
\(\Leftrightarrow HB=BC-BH=625-576=49\left(cm\right)\)
3:
góc C=90-50=40 độ
Xét ΔABC vuông tại A có sin C=AB/BC
=>4/BC=sin40
=>\(BC\simeq6,22\left(cm\right)\)
\(AC=\sqrt{BC^2-AB^2}\simeq4,76\left(cm\right)\)
1:
góc C=90-60=30 độ
Xét ΔABC vuông tại A có
sin B=AC/BC
=>3/BC=sin60
=>\(BC=\dfrac{3}{sin60}=2\sqrt{3}\left(cm\right)\)
=>\(AB=\dfrac{2\sqrt{3}}{2}=\sqrt{3}\left(cm\right)\)
Lời giải:
a. Áp dụng hệ thức lượng trong tam giác vuông:
$AB^2=BH.BC$
$AC^2=CH.CB$
$\Rightarrow (\frac{AB}{AC})^2=\frac{BH.BC}{CH.CB}=\frac{BH}{CH}$
$\Leftrightarrow (\frac{7}{24})^2=\frac{49}{576}=\frac{BH}{CH}$
b.
$\frac{BH}{CH}=\frac{49}{576}$
$BH+CH=BC=625$ (cm)
$\Rightarrow BH=625:(49+576).49=49$ (cm)
$CH=BC-BH=625-49=576$ (cm)
AB/1=BC/2=AC/căn 3
=>AB/0,5=BC/1=AC/căn 3/2
AB/sinC=BC/sinA=AC/sinB
=>sinC=1/2 và sin A=1 và sin B=căn 3/2
=>góc C=30 độ; góc A=90 độ; góc B=60 độ
BC=căn 3^2+4^2=5cm
AB/BC=3/5
AC/BC=4/5
AB/AC=3/4
AC/AB=4/3