K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

22 tháng 8 2023

Áp dụng đl tổng 3 góc trong tam giác:

\(\Rightarrow\widehat{C}=180^o-75^o-45^o=60^o\)

Ta có:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\\ \Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}=\dfrac{\sqrt{6}}{2}\)

$HaNa$

22 tháng 8 2023

Mà: \(\widehat{C}=180^o-75^o-45^o=60^o\)

Ta có:

\(\dfrac{AC}{sinB}=\dfrac{AB}{sinC}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sinC}{sinB}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{sin60^o}{sin45^o}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\dfrac{\sqrt{3}}{2}}{\dfrac{\sqrt{2}}{2}}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{3}}{\sqrt{2}}\)

\(\Rightarrow\dfrac{AB}{AC}=\dfrac{\sqrt{6}}{2}\)

góc C=180-75-45=60 độ

Xét ΔABC có AB/sinC=AC/sinB

=>AB/sin60=2/sin45

=>\(AB=\sqrt{6}\)

30 tháng 8 2023

Ta có: 

\(\widehat{C}=180^o-75^o-45^o=60^o\)

Xét tam giác ABC ta có:

\(\dfrac{AB}{sinC}=\dfrac{AC}{sinB}\)

\(\Rightarrow AB=\dfrac{ACsinC}{sinB}\)

\(\Rightarrow AB=\dfrac{2\cdot sin60^o}{sin45^o}\)

\(\Rightarrow AB=\sqrt{6}\)

Vậy: ...

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Áp dụng định lí cosin trong tam giác ABC

\(\begin{array}{l}{a^2} = {b^2} + {c^2} - \,2b\,c.\cos A\quad (1)\\{b^2} = {a^2} + {c^2} - \,2a\,c.\cos B\quad (2)\end{array}\)

(trong đó: AB = c, BC = a và AC = b)

Ta được:  \(B{C^2} = {a^2} = {8^2} + {5^2} - 2.8.5.\cos {45^o} = 89 - 40\sqrt 2 \)\( \Rightarrow BC \approx 5,7\)

Từ (2) suy ra \(\cos B = \frac{{{a^2} + {c^2} - {b^2}\,}}{{2a\,c}}\);

Mà: a = BC =5,7; b =AC = 8; c =AB =5.

\( \Rightarrow \cos B \approx \frac{{ - 217}}{{1900}} \Rightarrow \widehat B \approx {97^o} \Rightarrow \widehat C \approx {38^o}\)

Vậy tam giác ABC có BC = 5,7, \(\widehat B = {97^o},\widehat C = {38^o}\)

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính...
Đọc tiếp

Bài 10:Cho ABC có a = 8, b =10, c =13 a. ABC có góc tù hay không ? Tính bán kính đường tròn ngoại tiếp ABC. b. Tính diện tích ABC

 Bài 11:Cho tam giác ABC có: a = 6, b = 7, c = 5. a) Tính S ,h ,R,r ABC a b) Tính bán kính đường tròn đi qua A, C và trung điểm M của cạnh AB.

Bài 12:Cho tam giác ABC có: AB = 6, BC = 7, AC = 8. M trên cạnh AB sao cho MA = 2 MB. a) Tính các góc của tam giác ABC. b) Tính S ,h ,R ABC a , r. c) Tính bán kính đường tròn ngoại tiếp ∆MBC.

Bài 13:Cho ABC có 0 0 A B b = = = 60 , 45 , 2 tính độ dài cạnh a, c, bán kính đường tròn ngoại tiếp và diện tích tam giác ABC

Bài 14:Cho ABC AC = 7, AB = 5 và 3 cos 5 A = . Tính BC, S, a h , R, r.

Bài 15:Cho ABC có 4, 2 m m b c = = và a =3 tính độ dài cạnh AB, AC.

Bài 16:Cho ABC có AB = 3, AC = 4 và diện tích S = 3 3 . Tính cạnh BC

Bài 17:Cho tam giác ABC có ˆ o A 60 = , c h 2 3 = , R = 6. a) Tính độ dài các cạnh của ∆ABC. b) Họi H là trực tâm tam giác ABC. Tính bán kính đường tròn ngoại tiếp ∆AHC.

Bài 18:a. Cho ABC biết 0 0 a B C = = = 40,6; 36 20', 73 . Tính BAC , cạnh b,c. b.Cho ABC biết a m = 42,4 ; b m = 36,6 ; 0 C = 33 10' . Tính AB, và cạnh c.

Bài 19:Tính bán kính đường tròn nội tiếp ABC biết AB = 2, AC = 3, BC = 4.

Bài 20:Cho ABC biết A B C (4 3; 1 , 0;3 , 8 3;3 − ) ( ) ( ) a. Tính các cạnh và các góc của ABC b. Tính chu vi và diện tích ABC

0
21 tháng 9 2023

a) Ta có: 

\(\widehat{A}=180^o-60^o-45^o=75^o\)

Áp dụng định lý sin ta có:

\(\dfrac{BC}{sinA}=\dfrac{AC}{sinB}\)

\(\Rightarrow AC=\dfrac{BC\cdot sinB}{sinA}\)

\(\Rightarrow AC=\dfrac{a\cdot sin60^o}{sin75^o}=a\cdot\dfrac{3\sqrt{2}-\sqrt{6}}{2}\) 

\(\dfrac{BC}{sinA}=\dfrac{AB}{sinC}\)

\(\Rightarrow AB=\dfrac{BC\cdot sinC}{sinA}\)

\(\Rightarrow AB=\dfrac{a\cdot sin45^o}{sin75^o}=a\cdot\left(\sqrt{3}-1\right)\) 

b) \(cos75^o\)

\(=cos\left(30^o+45^o\right)\)

\(=cos30^o\cdot cos45^o-sin30^o\cdot sin45^o\)

\(=\dfrac{\sqrt{3}}{2}\cdot\dfrac{\sqrt{2}}{2}-\dfrac{1}{2}\cdot\dfrac{\sqrt{2}}{2}\)

\(=\dfrac{\sqrt{2}}{2}\cdot\left(\dfrac{\sqrt{3}-1}{2}\right)\)

\(=\dfrac{\sqrt{6}-\sqrt{2}}{4}\left(dpcm\right)\)

31 tháng 7 2023

Bạn xem lại đề nhé, còn thiếu dữ kiện gì nhé

HQ
Hà Quang Minh
Giáo viên
24 tháng 9 2023

Ta có: \(a = BC = 20;\;b = AC = 15;\;c = AB = 12.\)

a) Áp dụng định lí cosin trong tam giác ABC, ta có:

 \(\cos A = \frac{{{b^2} + {c^2} - {a^2}}}{{2bc}};\;\cos B = \frac{{{a^2} + {c^2} - {b^2}}}{{2ac}}\)

\( \Rightarrow \cos A = \frac{{{{15}^2} + {{12}^2} - {{20}^2}}}{{2.15.12}};\;\cos B = \frac{{{{20}^2} + {{12}^2} - {{15}^2}}}{{2.20.12}}\)

\( \Rightarrow \cos A =  - \frac{{31}}{{360}};\;\cos B = \frac{{319}}{{480}}\)

\( \Rightarrow \widehat A = 94,{9^o};\;\widehat B = 48,{3^o}\)

\( \Rightarrow \widehat C = {180^o} - \left( {94,{9^o} + 48,{3^o}} \right) = 36,{8^o}\)

b)

Diện tích tam giác ABC là: \(S = \frac{1}{2}.bc.\sin A = \frac{1}{2}.15.12.\sin 94,{9^o} \approx 89,7.\)

NV
18 tháng 3 2021

\(cosA=\dfrac{AB^2+AC^2-BC^2}{2AB.AC}=-\dfrac{1}{32}\)

\(\Rightarrow A\approx92^0\)

\(p=\dfrac{AB+AC+BC}{2}=\dfrac{31}{2}\)

\(S_{ABC}=\sqrt{p\left(p-AB\right)\left(p-AC\right)\left(p-BC\right)}\simeq40\)

\(r=\dfrac{S}{p}=\dfrac{80}{31}\)