Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
bạn gửi lại link vào chỗ tin nhắn của mk đc ko. THANKS!!!
Vì FI vuông góc với AC, BE vuông góc với AC nên FI song song với EQ
suy ra\(\frac{AI}{IE}=\frac{AF}{FB}\)(1)
Vì FJ vuông góc với AD, BC vuông góc với AD nên JI song song với BC
suy ra \(\frac{AF}{FB}=\frac{AJ}{JD}\)(2)
Từ (1) và (2) suy ra \(\frac{AI}{IE}=\frac{AJ}{JD}\)suy ra IJ song song với ED (a)
VÌ IF vuông góc với AC, FQ vuông góc với AC nên IF song song với FQ
suy ra\(\frac{IE}{EC}=\frac{FH}{HC}\) (3)
VÌ FK vuông góc với BC,AD vuông góc với BC nên FK song song với AD
suy ra \(\frac{KD}{KC}=\frac{KH}{HC}\)(4)
Từ (3) và (4) suy ra \(\frac{IE}{EC}=\frac{KD}{KC}\)suy ra IK song song với ED (b)
Vì FK song song với AD(cmt) nên\(\frac{AF}{FB}=\frac{KD}{BK}\)(5)
Vì FQ vuông góc với EB,AC vuông góc với EB nên FQ song song với EI
suy ra \(\frac{AF}{FB}=\frac{QE}{BQ}\)(6)
Từ (5) và (6) suy ra \(\frac{BQ}{QE}=\frac{BK}{KD}\) suy ra QK song song với ED (c)
Từ (a), (b) và (c) suy ra I,J,Q,K thẳng hàng
ta cm MN va PN cung vuong goc EF
mn la trung tuyen tam giac mef co me=mf =>mn vuong goc ef
tuong tu, xet tam giac pef ta cung co pn vuong goc ef
a: Xét tứ giác BHCK có
M là trung điểm của BC
M là trung điểm của HK
Do đó: BHCK là hình bình hành
Qua B kẻ đường thẳng //AC lần lượt cắt AK, AD tại L, G
=>ˆAFE=ˆACBAFE^=ACB^
ˆBFD=ˆBCABFD^=BCA^
=>ˆBFD=ˆAFE=ˆBFKBFD^=AFE^=BFK^
=>FB là phân giác trong góc ˆKFDKFD^ (1)
=>BKBD=FKFDBKBD=FKFD (2)
có FC⊥⊥FB (3)
từ (1,3) =>FC là phân giác ngoài ˆKFDKFD^
=>CKCD=FKFDCKCD=FKFD (4)
từ (2, 4) =>BKBD=CKCDBKBD=CKCD
<=>KBKC=DBDCKBKC=DBDC
<=>BLCA=BGCABLCA=BGCA (vì BL //AC //BG)
<=>BL =BG (5)
có FMBL=AFAB=FNBGFMBL=AFAB=FNBG (6)
từ (5, 6)=>FM =FN (đpcm)