\(\frac{sinA}{2}\le\frac{a}{b+c}\)

">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 11 2020

Vẽ đường phân giác AD, gọi H là chân đường vuông góc kẻ từ B xuống AD

Theo tính chất đường phân giác, ta có: \(\frac{AB}{BD}=\frac{AC}{CD}=\frac{AB+AC}{BC}=\frac{b+c}{a}\Rightarrow\frac{BD}{AB}=\frac{a}{b+c}\)

Suy ra \(\sin\frac{A}{2}=\sin BAD=\frac{BH}{BA}\le\frac{BD}{AB}=\frac{a}{b+c}\)(đpcm)

23 tháng 11 2020

Kiệt nguyễn

\(\frac{sinA}{2}\ne sin\frac{A}{2}\)

23 tháng 11 2020

câu này có nhiều r 

bạn chỉ cần kẻ 1 đường vuông góc là ra

18 tháng 8 2019

a) Xét 2 tam giác vuông AMB và ANC có: \(\widehat{MAB}=\widehat{NAC}\) ( do AD là tia phân giác ^A ) 

\(\Rightarrow\)\(\Delta AMB~\Delta ANC\) ( g-g ) \(\Rightarrow\)\(\frac{BM}{AB}=\frac{CN}{AC}\)

b) Theo bđt 3 điểm ta có: \(\hept{\begin{cases}BM+DM\le BD\\CN+DN\le CD\end{cases}}\)\(\Rightarrow\)\(BM+CN+DM+DN\le BC\)

\(\Rightarrow\)\(BM+CN\le BC\)

Dấu "=" xảy ra khi \(\hept{\begin{cases}M\in BD,AD\\N\in CD,AD\end{cases}}\)\(\Rightarrow\)\(M\equiv N\equiv D\)\(\Rightarrow\)\(BD\perp AD;CD\perp AD\) hay tam giác ABC có AD vừa là đường phân giác vừa là đường cao => tam giác ABC cân tại A 

c) Có: \(\sin\left(\frac{A}{2}\right)=\frac{BM}{AB}=\frac{CN}{AC}=\frac{BM+CN}{AB+AC}\le\frac{BC}{AB+AC}\le\frac{BC}{2\sqrt{AB.AC}}\)

Dấu "=" xảy ra khi tam giác ABC cân tại A 

26 tháng 7 2015

A B C H

Kẻ đường cao AH vuông góc với BC (H \(\in\) BC)

Xét tam giác AHB vuông tại H ta có:  \(\sin B=\frac{AH}{c}\Leftrightarrow AH=sinB\times c\) (1)

Xét tam giác AHC vuông tại H ta có: \(\sin C=\frac{AH}{b}\Leftrightarrow AH=\sin C\times b\)  (2)

(1),(2)\(\Rightarrow\sin C\times b=\sin B\times c\Leftrightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\)

Rồi bạn chứng minh tương tự nha!

12 tháng 8 2016

A B C H K c a b

Dựng các đường cao như trên hình vẽ .

Ta có : \(\frac{a}{sinA}=\frac{a}{\frac{BH}{c}}=\frac{ac}{BK}\)

\(\frac{b}{sinB}=\frac{b}{\frac{AH}{c}}=\frac{bc}{AH}\)

\(\frac{c}{sinC}=\frac{c}{\frac{BK}{a}}=\frac{ac}{BK}=\frac{c}{\frac{AH}{b}}=\frac{bc}{AH}\)

\(\Rightarrow\frac{a}{sinA}=\frac{b}{sinB}=\frac{c}{sinC}\)

12 tháng 8 2016

Từ A ta kẻ AH vuông góc với BC, ta có ;
Sin B = \(\frac{Ah}{AB}\)
Sin C= \(\frac{Ah}{AC}\)
=> \(\frac{\sin B}{\sin C}=\frac{Ah}{Ab}=\frac{Ah}{AB}:\frac{Ah}{AC}=\frac{AC}{AB}\) 

<=> \(\frac{\sin B}{\sin C}=\frac{B}{C}\)
<=> \(\sin B=\frac{C}{\sin C}\)
Tương tự ta có : \(\sin A=\frac{C}{\sin C}\)
=> \(\frac{\sin A=B}{\sin B=C}=\frac{C}{\sin C}\text{đ}pcm\)

2 tháng 9 2018

B A C H K a c b

Vẽ \(AH\perp BC\)

Ta có: \(\Delta AHB\perp H\)

\(\Rightarrow SinB=\frac{AH}{c}\)

Ta có: \(\Delta AHC\perp H\)

\(\Rightarrow SinC=\frac{AH}{b}\)

\(\Rightarrow\frac{\sin B}{\sin C}=\frac{AH}{c}:\frac{AH}{b}=\frac{AH}{c}.\frac{b}{AH}=\frac{b}{c}\)

\(\Rightarrow\frac{b}{\sin B}=\frac{c}{\sin C}\left(1\right)\)

Vẽ \(BK\perp AC\)

Ta có \(\Delta BKC\perp K\)

\(\Rightarrow SinC=\frac{BK}{a}\)

Ta có: \(\Delta AKB\perp K\)

\(\Rightarrow SinA=\frac{BK}{c}\)

\(\Rightarrow\frac{\sin A}{\sin C}=\frac{BK}{c}:\frac{BK}{a}=\frac{BK}{c}.\frac{a}{BK}=\frac{a}{c}\)

\(\Rightarrow\frac{a}{\sin A}=\frac{b}{\sin C}\left(2\right)\)

Từ ( 1 ) và ( 2 ) suy ra \(\frac{a}{\sin A}=\frac{b}{\sin B}=\frac{c}{\sin C}\left(đpcm\right)\)

17 tháng 7 2019
https://i.imgur.com/7UYQkx1.jpg