Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
![](https://rs.olm.vn/images/avt/0.png?1311)
Gọi AH,BK,CE lần lượt là các đường cao của ΔABC
Lấy DF,DG,FG lần lượt bằng AH,BK,CE
=>AH:BK:CE=BC:AC:AB(Định lí)
=>AH/BC=BK/AC=CE/AB
=>DF/BC=DG/AC=FG/AB
=>ΔDFG đồng dạng với ΔBCA
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C H
a) Xét tam giác HBA và tam giác ABC :
\(\widehat{AHB}=\widehat{BAC}\left(=90^0\right)\)
\(\widehat{ABC}\)chung
=> tam giác HBA \(~\)tam giác ABC ( đpcm )
b) Chứng minh tương tự câu a) ta có tam giác ABC \(~\)tam giác HAC
\(\Rightarrow\frac{AC}{HC}=\frac{BC}{AC}\)
\(\Rightarrow AC^2=HC\cdot BC\)( đpcm )
c) Áp dụng đính lý Pytago vào tam giác ABC vuông tại A
\(BC=\sqrt{AB^2+AC^2}=\sqrt{15^2+20^2}=25\)( cm )
Từ câu b) ta có : \(HC=\frac{AC^2}{BC}=\frac{20^2}{25}=16\)
Vậy....
![](https://rs.olm.vn/images/avt/0.png?1311)
a, Xét tg HBA và tgABC:
Có: góc B chung
H=A=90
=> tg HBA đồng dạng ABC (gg)
b, Vì tg BHA đồng dạng tg ABC:
=>AB/HB=BC/AB
=>đpcm.
c, Áp dụng tính chất tia phân giác:
=>AB/AC=BI/IC=>BI/AB=IC/AC
Áp dụng tính chất dãy tỉ số bằng nhau:
BI/AB=IC/AC=BI+IC/AB+AC=BC/AB+AC=10/6+8=5/7
Suy ra: BI=5/7.6=4,3
IC=5/7.8=5,7
Nhớ k nha.
![](https://rs.olm.vn/images/avt/0.png?1311)
a)
Xét \(\Delta ABC\)và \(\Delta HBA\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{B}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HBA\)
\(\RightarrowĐpcm\)
b)
Xét \(\Delta ABC\) và \(\Delta HAC\) có:
\(\widehat{A}=\widehat{H}=90^o\)
\(\widehat{C}\)là góc chung
\(\Rightarrow\Delta ABC\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\Delta HBA\)đồng dạng với \(\Delta HAC\) (bắc cầu)
Vì \(\Delta HBA\)đồng dạng với \(\Delta HAC\)
\(\Rightarrow\frac{AH}{HC}=\frac{HB}{AH}\Rightarrow AH^2=HB.HC\Rightarrowđpcm\)
![](https://rs.olm.vn/images/avt/0.png?1311)
Xét \(\Delta ABC\) và \(\Delta DIC\) có:
\(\widehat{ABC}=\widehat{DIC}=90^0\)
\(\widehat{ACB}\) chung.
\(\Rightarrow\Delta ABC~DIC\left(g.g\right)\)
b.
Hạ \(BK\perp AC\)
Do BI trung tuyến nên \(BI=IA=IC=\frac{AC}{2}=7,5\left(cm\right)\)
\(\Delta KCB~\Delta BCA\left(g.g\right)\Rightarrow BC^2=KC\cdot AB\Rightarrow KC=9,6\left(cm\right)\)
Áp dụng định lý Thales,ta có:
\(\frac{CI}{CK}=\frac{CD}{CB}=\frac{ID}{BK}=\frac{7,5}{9,6}\)
\(\Rightarrow CD=\frac{7,5\cdot CB}{9,6}=\frac{7,5\cdot12}{9,6}=9,375\left(cm\right)\)
Áp dụng định lý Pythagoras vào \(\Delta CBK\),ta có:
\(BK^2+KC^2=BC^2\)
\(\Rightarrow BK^2=BC^2-KC^2=51,84\left(cm\right)\)
\(\Rightarrow BK=7,2\left(cm\right)\)
\(ID=\frac{7,5\cdot BK}{9,6}=\frac{7,5\cdot7,2}{9,6}=5,625\left(cm\right)\)
c.
\(\Delta BDE~IDC\left(g.g\right)\Rightarrowđpcm\)
P/S:Bài j mà kỳ cục zậy ? câu c lại easy hơn nhiều câu b:((
![](https://rs.olm.vn/images/avt/0.png?1311)
A B C D E 6 H
a) BC = \(\sqrt{AB^2+AC^2}\)= \(\sqrt{6^2+8^2}\)= \(\sqrt{100}\)= 10 (theo định lí Pythagoras)
\(\Delta\)ABC có BD là phân giác => \(\frac{AD}{AB}\)= \(\frac{CD}{BC}\)= \(\frac{AD}{DC}\)= \(\frac{AB}{BC}\)= \(\frac{6}{10}\)= \(\frac{3}{5}\).
b) Ta có : \(\widehat{ABE}\)= \(\widehat{EBC}\)(BD là phân giác)
=> \(\Delta ABD\)~ \(\Delta EBC\)(gg)
=> \(\frac{BD}{BC}\)= \(\frac{AD}{EC}\)<=> BD.EC = AD.BC (đpcm).
c) Ta có : \(\Delta CHE\)~ \(\Delta CEB\)( 2 tam giác vuông có chung góc C )
=> \(\frac{CH}{CE}\)= \(\frac{CE}{CB}\)<=> CH.CB = CE2 (1)
\(\Delta CDE\)~ \(\Delta BDA\)(gg (2 góc đối đỉnh))
\(\Delta BDA~\Delta BCE\) (câu b))
=> \(\Delta CDE~\Delta BCE\)
=> \(\frac{CE}{BE}\)= \(\frac{DE}{CE}\)<=> BE.DE = CE2 (2)
Từ (1) và (2) => CH.CB = ED.EB (đpcm).