K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 11 2019

Trong △ OAB, ta có PQ là đường trung bình nên: PQ =1/2 AB (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (1)

Trong  △ OAC, ta có PR là đường trung bình nên:

PR = 1/2 AC (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (2)

Trong  △ OBC, ta có QR là đường trung bình nên

QR = 1/2 BC (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy  △ PQR đồng dạng  △ ABC (c.c.c)

29 tháng 8 2023

con này khá

26 tháng 2 2022

-Xét △OAB có: P trung điểm OA, Q trung điểm OB (gt)

\(\Rightarrow\)PQ là đường trung bình của △OAB.

\(\Rightarrow\)PQ=\(\dfrac{1}{2}\)AB.

\(\Rightarrow\dfrac{PQ}{AB}=\dfrac{\dfrac{1}{2}AB}{AB}=\dfrac{1}{2}\)

-Xét △OAC có: P trung điểm OA, R trung điểm OC (gt)

\(\Rightarrow\)PR là đường trung bình của △OAC.

\(\Rightarrow\)PR=\(\dfrac{1}{2}\)AC.

\(\Rightarrow\dfrac{PR}{AC}=\dfrac{\dfrac{1}{2}AC}{AC}=\dfrac{1}{2}\)

-Xét △OBC có: R trung điểm OC, Q trung điểm OB (gt)

\(\Rightarrow\)RQ là đường trung bình của △OBC.

\(\Rightarrow\)RQ=\(\dfrac{1}{2}\)BC.

\(\Rightarrow\dfrac{RQ}{BC}=\dfrac{\dfrac{1}{2}BC}{BC}=\dfrac{1}{2}\)

-Xét △PQR và △ABC có: \(\dfrac{PQ}{AB}=\dfrac{PR}{AC}=\dfrac{QR}{BC}\left(=\dfrac{1}{2}\right)\)

\(\Rightarrow\)△PQR ∼ △ABC (c-c-c)

 

 

18 tháng 3 2017

Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

* Trong △ AOB ta có:

P trung điểm của OA (gt)

Q trung điếm của OB (gt)

Suy ra PQ là đường trung bình của △ AOB

Suy ra: PQ = 1/2 AB (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (1)

* Trong  △ OAC, ta có:

P trung điểm của OA (gt)

R trung điểm của OC (gt)

Suy ra PR là đường trung bình của tam giác OAC.

Suy ra: PR =1/2 AC (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (2)

* Trong  △ OBC, ta có:

Q trung điểm của OB (gt)

R trung điểm của OC (gt)

Suy ra QR là đường trung bình của tam giác OBC

Suy ra: QR = 1/2 BC (tính chất đường trung bình của tam giác)

Suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8 (3)

Từ (1), (2) và (3) suy ra: Giải sách bài tập Toán 8 | Giải bài tập Sách bài tập Toán 8

Vậy  △ PQR đồng dạng  △ ABC (c.c.c)

bài này dễ mà bạn

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

Cho đoạn thẳng AB,đường trung trực của đoạn thẳng AB cắt AB tại I,Trên đường thẳng d lấy các điểm M N tùy ý,Chứng minh tam giác MNA = tam giác MNB,Toán học Lớp 7,bài tập Toán học Lớp 7,giải bài tập Toán học Lớp 7,Toán học,Lớp 7

26 tháng 11 2018

Cậu giỏi thiệt trả bù cho mk hihihaha

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là...
Đọc tiếp

² Bài 3. Cho AM là trung tuyến của D ABC, đường thẳng d song song với BC, cắt AB, AC và AM theo thứ tự là: E, F, N . Trên tia đối của tia FB lấy điểm K, đường thẳng KN cắt AB tại P, đường thẳng KM cắt AC tại Q. Chứng minh rằng: PQ // BC .

Bài 6. Cho đoạn thẳng AB song song với đường thẳng d. Tìm quỹ tích những điểm M (điểm M và đường thẳng d thuộc hai nửa mặt phẳng đối nhau có bờ là đường thẳng AB) sao cho các tia MA, MB tạo với đường thẳng d một tam giác có diện tích nhỏ nhất.

Bài 8: Cho tam giác ABC, trên cạnh BC, CA và AB lần lượt lấy các điểm M, N và P sao cho: a) Chứng minh rằng: AM, BN, CP là độ dài ba cạnh của một tam giác mà ta kí hiệu là \(\Delta\)(k). b) Tìm k để diện tích tam giác \(\Delta\)(k) nhỏ nhất.

0