\(\left(M\in BC,N\in AC\right)\).Gọi O là g...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 5 2021

A B C P M N D E F

a) Ta có ^APB = ^BAC/2 + ^ABC/2 + ^ACB = 900 + ^ACB/2 = ^AMP; ^BAP = MAP

Suy ra \(\Delta\)AMP ~ \(\Delta\)APB (g.g) => \(\frac{AM}{PM}=\frac{AP}{BP}\). Tương tự \(\frac{PN}{BN}=\frac{AP}{BP}\)

Từ đó \(\frac{AM}{BN}.\frac{PN}{PM}=\left(\frac{AP}{BP}\right)^2\). Dễ thấy PM = PN, vậy \(\frac{AM}{BN}=\left(\frac{AP}{BP}\right)^2\)

b) Theo hệ thức lượng và tam giác đồng dạng, ta có biến đổi sau:

\(\frac{AM}{AC}+\frac{BN}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AM}{AP}.\frac{AP}{AC}+\frac{BN}{BP}.\frac{BP}{BC}+\frac{CP^2}{BC.AC}\)

\(=\frac{AP^2}{AB.AC}+\frac{BP^2}{BA.BC}+\frac{CP^2}{CA.CB}\)

\(=\frac{AP^2.BC+BP^2.CA+CP^2.AB}{BC.CA.AB}\)

\(=\frac{AP^2.\sin A+BP^2.\sin B+CA^2.\sin C}{2S}\)(S là diện tích tam giác ABC)

\(=\frac{AP^2.\sin\frac{A}{2}.\cos\frac{A}{2}+BP^2.\sin\frac{B}{2}.\cos\frac{B}{2}+CP^2.\sin\frac{C}{2}.\cos\frac{C}{2}}{S}\)

\(=\frac{FA.FP+DB.DP+EC.EP}{S}=\frac{dt\left[AFPE\right]+dt\left[BDPF\right]+dt\left[CEPD\right]}{S}=1.\)

13 tháng 2 2020

Bạn có cần mình vẽ hình không, thôi mình cứ vẽ cho rõ ràng nhé, mà hình không chắc đúng đâu nha :33

A B C M K D E

a) Xét tam giác \(ACM\), KM là tia phân giác của \(\widehat{AMC}\)

\(\Rightarrow\frac{AM}{MC}=\frac{AD}{DC}\) ( tính chất đường phân giác trong tam giác )

Mà : \(MC=MB\) ( Do M là trung điểm của BC )

\(\Rightarrow\frac{AM}{MB}=\frac{AD}{DC}\) ( đpcm )

b) Chứng minh tương tự phần a) với tam giác \(AMB\) ta có : \(\frac{AM}{MB}=\frac{AK}{BK}\) ( tính chất đường phân giác trong tam giác )

Khi đó : \(\frac{AK}{BK}=\frac{AD}{DC}\left(=\frac{AM}{MB}\right)\)

\(\Rightarrow\frac{AK}{AB}=\frac{AD}{AC}\)

Xét \(\Delta ABC,K\in AB,D\in AC\) và \(\frac{AK}{AB}=\frac{AD}{AC}\left(cmt\right)\)

\(\Rightarrow KD//BC\) ( định lý Talet đảo ) (đpcm)

c)  Áp dụng định lý Talet cho các tam giác ABM , ACM ta có :

+) \(EK//BM\Rightarrow\frac{KE}{BM}=\frac{AE}{AM}\)

+) \(ED//MC\Rightarrow\frac{ED}{MC}=\frac{AE}{AM}\)

\(\Rightarrow\frac{KE}{BM}=\frac{ED}{MC}\Rightarrow EK=ED\) ( do \(BM=CM\) )

Nên : E là trung điểm của KD ( đpcm )

d) Ta có : \(KD=10\Rightarrow KE=5\)

Theo câu c) ta có : \(\frac{KA}{AB}=\frac{AE}{AM}=\frac{KE}{BM}\Rightarrow\frac{5}{8}=\frac{KE}{BM}=\frac{5}{BM}\)

\(\Rightarrow BM=8\Rightarrow BC=16\left(cm\right)\)

Vậy : \(BC=16cm\)

21 tháng 1 2019

đề bài có chút sai xót, sửa lại là

b) \(\frac{AM}{BN}=\left(\frac{AI}{BI}\right)^2\)

21 tháng 2 2021

định lý Ceva