Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét ΔABC có
BM là đường phân giác ứng với cạnh AC(gt)
nên \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)
hay \(\dfrac{AM}{CM}=\dfrac{AB}{BC}\)(1)
Xét ΔABC có
CN là đường phân giác ứng với cạnh AB(gt)
nên \(\dfrac{AN}{AC}=\dfrac{BN}{BC}\)
hay \(\dfrac{AN}{BN}=\dfrac{AC}{BC}\)(2)
Ta có: ΔABC cân tại A(gt)
nên AB=AC(3)
Từ (1), (2) và (3) suy ra \(\dfrac{AN}{BN}=\dfrac{AM}{MC}\)
hay MN//BC(Đpcm)
b) Ta có: \(\dfrac{AM}{AB}=\dfrac{CM}{BC}\)(cmt)
nên \(\dfrac{AM}{5}=\dfrac{CM}{6}\)
mà AM+CM=AC(M nằm giữa A và C)
nên Áp dụng tính chất của dãy tỉ số bằng nhau, ta được:
\(\dfrac{AM}{5}=\dfrac{CM}{6}=\dfrac{AM+CM}{5+6}=\dfrac{AC}{11}=\dfrac{5}{11}\)
Do đó:
\(\left\{{}\begin{matrix}\dfrac{AM}{5}=\dfrac{5}{11}\\\dfrac{CM}{6}=\dfrac{5}{11}\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}AM=\dfrac{25}{11}\left(cm\right)\\CM=\dfrac{30}{11}\left(cm\right)\end{matrix}\right.\)
Xét ΔABC có MN//BC(cmt)
nên \(\dfrac{MN}{BC}=\dfrac{AM}{AC}\)(Hệ quả Định lí Ta lét)
\(\Leftrightarrow\dfrac{MN}{6}=\dfrac{25}{11}:5=\dfrac{25}{11}\cdot\dfrac{1}{5}=\dfrac{5}{11}\)
hay \(MN=\dfrac{30}{11}\left(cm\right)\)
c) Nửa chu vi của ΔABC là:
\(P_{ABC}=\dfrac{AB+AC+BC}{2}=\dfrac{5+5+6}{2}=\dfrac{16}{2}=8\left(cm\right)\)
Diện tích tam giác ABC là:
\(S_{ABC}=\sqrt{8\cdot\left(8-5\right)\cdot\left(8-5\right)\cdot\left(8-6\right)}=\sqrt{8\cdot3\cdot3\cdot2}=\sqrt{16\cdot9}=4\cdot3=12\left(cm^2\right)\)
Ta có: ΔANM∼ΔABC(gt)
nên \(\dfrac{S_{ANM}}{S_{ABC}}=\left(\dfrac{AM}{AC}\right)^2=\left(\dfrac{5}{11}\right)^2=\dfrac{25}{121}\)
\(\Leftrightarrow S_{ANM}=\dfrac{25}{121}\cdot12=\dfrac{300}{121}\left(cm^2\right)\)
zì tam giác ABC có tia phân giác AM
=>\(\frac{BM}{MC}=\frac{AB}{AC}=\frac{6}{8}=\frac{3}{4}\)(1)
mà BM+MC=11 (2)
Từ 1 zà 2 ta có hệ phương trình
\(\hept{\begin{cases}MB+MC=11\\\text{4MB-3MC=0 }\end{cases}}\)
\(\hept{\begin{cases}MB=\frac{33}{7}\\MC=\frac{44}{7}\end{cases}}\)
a:
BM=BC-CM=3cm
Xét ΔABC có AM là phân giác
nên AB/BM=AC/CM
=>AB/3=6/2=3
=>AB=9cm
b: Xét ΔABH vuông tại H và ΔACK vuông tại K có
góc BAH=góc CAK
=>ΔABH đồng dạng với ΔACK
a: AC=căn 10^2-6^2=8cm
BM là phân giác
=>AM/AB=CM/BC
=>AM/3=CM/5=(AM+CM)/(3+5)=1
=>AM=3cm; CM=5cm
b: Xét ΔMAB vuông tại A và ΔMDC vuông tại D có
góc AMB=góc DMC
=>ΔMAB đồng dạng với ΔMDC
a: \(BC=\sqrt{8^2+6^2}=10\left(cm\right)\)
b: Sửa đề: vuônggóc BC, cắt AC tại H
Xet ΔCDH vuông tại D và ΔCAB vuông tại A có
góc C chung
=>ΔCDH đồng dạng với ΔCAB
c: BD/DC=AB/AC=4/3
Xét ▲ABC có BM là pg (gt)=> \(\dfrac{AM}{MC}\) =\(\dfrac{AB}{BC}\) (tính chất tia phân giác)
Thay số: \(\dfrac{1}{3}\) =\(\dfrac{6}{BC}\) => BC+3.6:1 =18 (cm)