Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
mình nghĩ vì là song song nên mà hai điểm thuộc như vậy chắc là đường trung bình
nên mn là duong92 trung bình của tam giác abc nên mn = bc/2=20/2=10
còn bm =ab/2=5
vậy bm=5
mn=10
tick cho mình nha !!!
Tam giác ABM có :
M là trung điểm của AB nên AM = MB ( 1 )
N là trung điểm của AC nên AN = NC ( 2 )
Từ ( 1 ) và ( 2 ) suy ra MN // BC
\(\Rightarrow MN=\frac{1}{2}BC\Rightarrow MN=\frac{1}{2}.6=3\left(cm\right)\)
Vì BM = MN = NC ( gt )
\(\Rightarrow BM=3\left(cm\right)\)P/s hình như bài này mình làm rồi thì phải
:V chụp xong không gửi được cái phần kia nên mình chép ra vậy hình bạn tự vẽ nhé v
a) Áp dụng định lý Py-ta-go vào tam giác ABC vuông tại A ta được:
\(AB^2+AC^2=BC^2\)
\(\Rightarrow BC=\sqrt{AB^2+AC^2}=10\left(cm\right)\)
Xét tam giác ABC có MN//BC (gt)
\(\Rightarrow\frac{AM}{AB}=\frac{AN}{AC}=\frac{MN}{BC}\)( hệ quả của định lý Ta-let)
\(\Rightarrow\frac{3}{4}=\frac{AN}{8}=\frac{MN}{10}\)
\(\Rightarrow\hept{\begin{cases}AN=6\left(cm\right)\\MN=7,5\left(cm\right)\end{cases}}\)
b)Vì MI//AC (gt)
\(\Rightarrow MI//AK\left(K\in AB\right)\)
Vì IK//AB(gt)
\(\Rightarrow IK//AM\left(M\in AB\right)\)
Ta có: \(\hept{\begin{cases}MI//AK\left(cmt\right)\\IK//AM\left(cmt\right)\end{cases}\Rightarrow MI=AK}\)( tc cặp đoạn chắn)
Ta có: AM+MB=AB
\(\Rightarrow MB=1,5\left(cm\right)\)
Xét tam giác ABC có MI//AB(gt)
Cho biểu thức B=\(\frac{2x+1}{x^2-1}\); A= \(\frac{3x+1}{x^2-1}\)--\(\frac{x}{x-1}\)+\(\frac{x-1}{x+1}\) (x khác +,- 1; x khác \(\frac{-1}{2}\))
a) Tính giá trị của B biết x=-2
b) Rút gọn A
c) Cho P=A:B Tìm x biết P=3
Cho biểu thức A=\(\left(\frac{2x-3}{x^2-9}-\frac{2}{x+3}\right):\frac{x}{x+3}\)(x khác +,- 3)
a) Rút gọn A
b) TÍnh giá trị của A khi x=\(-\frac{1}{2}\)
c) Tìm các giá trị nguyên của x để A nhận giá trị nguyên
a, Ta có \(\dfrac{AM}{AB}=\dfrac{AN}{AC}=\dfrac{6}{8}=\dfrac{7,5}{10}=\dfrac{3}{4}\)
=> MN // BC (Ta lét đảo)
b, Vì MN // BC
Theo hệ quả Ta lét \(\dfrac{AM}{AB}=\dfrac{MN}{BC}\Leftrightarrow\dfrac{6}{8}=\dfrac{MN}{12}\Leftrightarrow MN=9cm\)
Hiệu số phần bằng nhau là
4 - 3 = 1 ( phần )
Chiều dài khu đất là
50 : 1 x 4 = 200 ( m )
Chiều rộng khu đất là
200 - 50 = 150 ( m )
Diện tích khu đất là
200 x 150 = 30 000 ( m2 ) = 3 ha
ĐS :
Qua M kẻ đường thẳng song song với AC cắt AB, AN lần lượt tại P và Q.
Ta thấy \(\widehat{ANC}=\widehat{QNM}\) (2 góc đối đỉnh), \(NM=NC\) (gt), \(\widehat{NCA}=\widehat{NMQ}\) (do AC//MQ) nên \(\Delta NAC=\Delta NQM\left(g.c.g\right)\)
\(\Rightarrow AC=MQ\)
Áp dụng định lý Thales trong tam giác ABC, ta có: \(\dfrac{BM}{BC}=\dfrac{PM}{AC}=\dfrac{PM}{MQ}\) \(\Rightarrow\dfrac{PM}{MQ}=\dfrac{1}{3}\)
Lại theo định lý Thales, trong tam giác APM, có: \(\dfrac{DE}{PM}=\dfrac{AE}{AM}\), trong tam giác AMQ, có \(\dfrac{AE}{AM}=\dfrac{EF}{MQ}\).
Từ đó, ta có \(\dfrac{DE}{PM}=\dfrac{EF}{MQ}\) \(\Rightarrow\dfrac{DE}{EF}=\dfrac{PM}{MQ}\). Mà \(\dfrac{PM}{MQ}=\dfrac{1}{3}\left(cmt\right)\) nên \(\dfrac{DE}{EF}=\dfrac{1}{3}\), hay \(EF=3DE\) (đpcm)
Fjfnfnnf