K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

16 tháng 1 2017

Áp dụng định lý pytago vào\(\Delta AHB\) ta có :

AB\(^2\) = AH\(^2\) + BH\(^2\) => (\(\sqrt{18}\))\(^2\) = AH\(^2\) + 3\(^2\)

=> 18 = AH\(^2\) + 9 => AH\(^2\) = 18 - 9

=> AH\(^2\) = 9 => AH = 3 cm (do AH > 0 cm)

Mà BH = 3 cm => AH =BH

Trong \(\Delta ABH\) có AH = BH nên \(\Delta ABH\) là tam giác cân tại H

Do đó \(\widehat{A}\) = \(\widehat{ABH}\)

Áp dụng định lý tổng 3 góc của tam giác vào tam giác ABH vuông tại H có:

\(\widehat{A}\) + \(\widehat{ABH}\) = 90\(^0\) mà \(\widehat{A}\) = \(\widehat{ABH}\)

=> 2.\(\widehat{A}\) = 90\(^0\) => \(\widehat{A}\) = 45\(^0\)

Vậy \(\widehat{BAC}\) = 45\(^0\)

16 tháng 12 2021

góc BAC = 30 đọ

 

27 tháng 12 2021
Giúp mình bài này đi mà :
1 tháng 12 2023

Dễ vl

 

AH
Akai Haruma
Giáo viên
12 tháng 2 2022

Lời giải:
Áp dụng định lý Pitago:

$32=BH^2=AB^2-AH^2$

$CH^2=AC^2-AH^2=81-AH^2$

$\Rightarrow CH^2-32=81-AB^2$

hay $CH^2-32=81-(BC^2-AC^2)=81-(BC^2-81)=162-BC^2$
hay $CH^2=194-BC^2=194-(\sqrt{32}+CH)^2$
$2CH^2+2\sqrt{32}CH+32=194$

$2CH^2+2\sqrt{32}CH-162=0$

$\Rightarrow CH=\sqrt{89}-2\sqrt{2}$ (do $CH>0$)

$\Rightarrow BC=CH+BH=\sqrt{89}-2\sqrt{2}+\sqrt{32}\sqrt{89}+2\sqrt{2}$

Chẳng hiểu tại sao Mình chẳng thấy gì ở bài làm của cô Chi mà mình vẫn cứ k đúng ???

11 tháng 5 2020

a, Gọi D vuông góc với phân giác của BAC tại điểm O

Xét △ADH và △ADK cùng vuông tại D

Có: HAD = KAD (gt)

=> △ADH = △ADK (cgv-gnk)

=> AH = AK (2 cạnh tương ứng)

=> △AHK cân tại A

b, Vẽ BI // CK (I  HK) 

=> AKH = BIH (2 góc đồng vị)

Mà AHK = AKH (△AHK cân tại A)

=> BIH = AHK 

=> BIH = BHI

=> △BHI cân tại B

=> BH = BI 

Xét △OBI và △OCK

Có: BOI = COK (2 góc đối đỉnh)

        OB = OC (gt)

       OBI = OCK (BI // CK)

=> △OBI = △OCK (g.c.g)

=> BI = CK (2 cạnh tương ứng)

Mà BH = BI (cmt)

=> BH = CK

c, Ta có: AH = AB + BH , AK = AC - KC

=> AH + AK = AB + BH + AC - KC

=> AH + AH = (AB + AC) + (BH - KC)    (AK = AH)

=> 2AH = AB + AC   (BH = KC => BH - KC = 0)

=> AH = (AB + AC) : 2 = (9 + 12) : 2 = 10,5 (cm)

=> BH = AH - AB = 10,5 - 9 = 1,5 (cm)

22 tháng 12 2023

a: Xét ΔAHB vuông tại H và ΔAKC vuông tại K có

AB=AC

\(\widehat{BAH}\) chung

Do đó: ΔAHB=ΔAKC

=>AH=AK

b: Ta có: ΔAHB=ΔAKC

=>\(\widehat{ABH}=\widehat{ACK}\)

=>\(\widehat{KBI}=\widehat{HCI}\)

Ta có: AK+KB=AB

AH+HC=AC

mà AK=AH và AB=AC

nên KB=HC

Xét ΔIKB vuông tại K và ΔIHC vuông tại H có

KB=HC

\(\widehat{KBI}=\widehat{HCI}\)

Do đó: ΔIKB=ΔIHC

c: ta có: ΔIKB=ΔIHC

=>IB=IC

Xét ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

Do đó: ΔABI=ΔACI

=>\(\widehat{BAI}=\widehat{CAI}\)

=>AI là phân giác của góc BAC

d: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

ta có: IB=IC

=>I nằm trên đường trung trực của BC(2)

ta có: MB=MC

=>M nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,I,M thẳng hàng