K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

\(\Delta ABM=\Delta ACM\left(c.c.c\right)\)

\(\Rightarrow\widehat{AMB}=\widehat{AMC}\)(2 góc tương ứng)

mà \(\widehat{AMB}+\widehat{AMC}=180^0\)( kề bù)

\(\Rightarrow\widehat{AMC}=\widehat{AMB}=180^0:2=90^0\)

Hay \(AM\perp BC\)

20 tháng 7 2019

D B M C E A Đó là hình

a: Xét ΔABM vuông tại M  và ΔACM vuông tại M có

AB=AC

AM chung

Do đó: ΔABM=ΔACM

b: Xét ΔABC có 

M là trung điểm của BC

MK//AB

Do đó: K là trung điểm của AC

Ta có: ΔAMC vuông tại M

mà MK là đường trung tuyến

nên KA=KM

2 tháng 2 2022

a) Vì \(AB=AC\) (giả thiết)

\(\Rightarrow\Delta ABC\) cân tại A

Mà \(AM\) là đường trung tuyến (giả thiết)

\(\Rightarrow AM\) cũng là đường phân giác \(\widehat{A}\) 

b) Vì \(\Delta ABC\) cân tại A (cmt)

Mà \(AM\) là đường phân giác (cmt)

\(\Rightarrow AM\) là đường trung trực \(BC\)

\(\Rightarrow AM\perp BC\)

c) Xét \(\Delta AMC\left(\widehat{M}=90^o\right)\) có:

\(AC^2=AM^2+MC^2\) (định lí pitago)

\(\Rightarrow AM=\sqrt{AC^2-MC^2}=\sqrt{5^2-\left(\dfrac{6}{2}\right)^2}=4\left(cm\right)\)

d) Xét \(\Delta AME\left(\widehat{E}=90^o\right)\) và \(\Delta AMF\left(\widehat{F}=90^o\right)\) có:

\(\widehat{EAM}=\widehat{FAM}\) (do \(AM\) là tia phân giác \(\widehat{EAF}\))

\(AM\) là cạnh chung

\(\Rightarrow\Delta AME=\Delta AMF\left(ch.gn\right)\)

\(\Rightarrow ME=MF\) (\(2\) cạnh tương ứng)

\(\Rightarrow\Delta MEF\) cân tại \(M\)

2 tháng 2 2022

a, Xét tam giác ABC có : AB = AC 

Vậy tam giác ABC cân tại A

Lại có M là trung điểm BC hay AM là trung tuyến 

=> AM đồng thời là đường phân giác ^A

b, Xét tam giác ABC cân tại A

AM là đường trung tuyến đồng thời là đường cao 

hay AM vuông BC 

c, Vì M là trung tuyến BC => BM = BC/2 = 6/2 = 3 cm 

Theo định lí Pytago tam giác ABM vuông tại M

\(AM=\sqrt{AB^2-BM^2}=4cm\)

d, Xét tan giác AFM và tam giác AEM có : 

^AFM = ^AEM = 900

AM _ chung 

^FAM = ^EAM ( AM là phân giác )

Vậy tam giác AFM = tam giác AEM ( ch - gn ) 

=> FM = EM ( 2 cạnh tương ứng )

Xét tam giác MEF có FM = EM 

Vậy tam giác MEF cân tại M 

20 tháng 5 2021

\(a)\)

\(\text{Ta có}:\)

\(\Delta ABC\)\(\text{vuông tại}\)\(A\)

\(\rightarrow BC^2=AB^2+AC^2\)

\(\rightarrow AC^2=BC^2-AB^2\)

\(\rightarrow AC^2=15^2-9^2\)

\(\rightarrow AC^2=144\)

\(\rightarrow AC=12\)

\(\rightarrow AB< AC< BC\)

\(\rightarrow\widehat{C}< \widehat{B}< \widehat{A}\)

\(\text{Ta có:}\)

\(AB\perp AC\rightarrow\widehat{BAC}=\widehat{EAC}\)

\(\rightarrow AB=AE\rightarrow A\)\(\text{là trung điểm}\)\(BE\)

\(b)\)

\(\text{Theo phần a), ta có:}\)\(AB=AE\rightarrow A\text{ }\)\(\text{là trung điểm}\)\(BE\)
\(\rightarrow CA\)\(\text{là trung tuyến}\)\(\Delta CBE\)

\(\text{Mà}\)\(BH\)\(\text{là trung tuyến}\)\(\Delta BCE\)\(,\)\(BH\text{∩}\text{ }CA=M\)

\(\rightarrow M\text{ }\)\(\text{là trọng tâm}\)\(\Delta BCE\)

\(\rightarrow CM=\frac{2}{3}CA\)

\(\rightarrow CM=8\)

\(c)\)

\(\text{Theo phần a)}\)\(\rightarrow\widehat{ECA}=\widehat{ACB}\)

                         \(\rightarrow\widehat{CEA}=\widehat{CBA}\)

\(\text{Do}\)\(AK//CE\rightarrow\widehat{KAB}=\widehat{AEC}=\widehat{CBA}=\widehat{KBA}\rightarrow KB=KA\)

         \(\widehat{KAC}=\widehat{ECA}=\widehat{ACB}=\widehat{ACK}\rightarrow KA=KC\)

         \(\rightarrow KB=KC\rightarrow K\)\(\text{là trung điểm}\)\(BC\)

\(\text{Mà}\)\(M\)\(\text{là trọng tâm}\)\(\Delta CBE\rightarrow E,MK\)\(\text{thẳng hàng}\)

20 tháng 5 2021

C B A H K M E

19 tháng 11 2021

Cứng đờ tay luôn rồi, khổ quá:((

a) Xét ΔDBFΔDBF và ΔFED:ΔFED:

DF:cạnh chung

ˆBDF=ˆEFDBDF^=EFD^(AB//EF)

ˆBFD=ˆEDFBFD^=EDF^(DE//BC)

=> ΔBDF=ΔEFD(g−c−g)ΔBDF=ΔEFD(g−c−g)

b) (Ở lớp 8 thì sé có cái đường trung bình ý bạn, nó sẽ có tính chất luôn, nhưng lớp 7 chưa học đành làm theo lớp 7 vậy)

Ta có: ˆDAE+ˆAED+ˆEDA=180oDAE^+AED^+EDA^=180o (Tổng 3 góc trong 1 tam giác)

Lại có: ˆAED+ˆDEF+ˆFEC=180oAED^+DEF^+FEC^=180o  

Mà ˆDEF=ˆEDADEF^=EDA^(AB//EF)

=>ˆDAE=ˆFECDAE^=FEC^

Xét ΔDAEΔDAE và ΔFEC:ΔFEC:

DA=FE(=BD)

ˆDAE=ˆEFC(=ˆDBF)DAE^=EFC^(=DBF^)

ˆDAE=ˆFECDAE^=FEC^ (cmt)

=>ΔDAE=ΔFEC(g−c−g)ΔDAE=ΔFEC(g−c−g)

=> DE=FC(2 cạnh t/ứ)

=> Đpcm