\(\overrightarrow{AB}.\overrightar...">
K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

19 tháng 5 2017

a) Có \(\overrightarrow{BC}^2=\left(\overrightarrow{AC}-\overrightarrow{AB}\right)^2=\overrightarrow{AC}^2+\overrightarrow{AB}^2-2\overrightarrow{AC}.\overrightarrow{AB}\)
Suy ra: \(\overrightarrow{AC}.\overrightarrow{AB}=\dfrac{\overrightarrow{AC^2}+\overrightarrow{AB}^2-\overrightarrow{BC}^2}{2}=\dfrac{8^2+6^2-11^2}{2}=-\dfrac{21}{2}\).
Do \(\overrightarrow{AC}.\overrightarrow{AB}< 0\) nên \(cos\widehat{BAC}< 0\) suy ra góc A là góc tù.
b) Từ câu a suy ra: \(cos\widehat{BAC}=\dfrac{\overrightarrow{AB}.\overrightarrow{AC}}{\left|\overrightarrow{AB}\right|.\left|\overrightarrow{AC}\right|}=-\dfrac{21}{2.6.8}=-\dfrac{7}{32}\).
Do N là trung điểm của AC nên \(AN=AC:2=8:2=4cm\).
\(\overrightarrow{AM}.\overrightarrow{AN}=AM.AN.cos\left(\overrightarrow{AM},\overrightarrow{AN}\right)\)
\(=2.4.cos\left(\overrightarrow{AB},\overrightarrow{AC}\right)=2.4.\dfrac{-7}{32}=-\dfrac{7}{4}\).

19 tháng 5 2017

Tích vô hướng của hai vectơ và ứng dụng

Tích vô hướng của hai vectơ và ứng dụng

15 tháng 12 2020

Có vẻ không đúng.

Giả sử \(\overrightarrow{AB}+\overrightarrow{MB}+\overrightarrow{MA}=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\left(\overrightarrow{MA}+\overrightarrow{AB}\right)=\overrightarrow{0}\)

\(\Leftrightarrow\overrightarrow{MB}+\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow2\overrightarrow{MB}=\overrightarrow{0}\)

\(\Leftrightarrow M\equiv B\) (Vô lí)

15 tháng 12 2020

Đề đúng đó bạn ơi Hồng Phúc CTV

Đây là đề thi học kì năm ngoái của trường mình mà.

28 tháng 6 2019

Em ms hok cái này nên ko chắc lăm ạ :D

Theo quy tắc 3 điểm\(\Rightarrow\overrightarrow{AB}+\overrightarrow{AC}=\overrightarrow{BC}\)

\(\overrightarrow{AM}+\overrightarrow{AN}=\overrightarrow{MN}\)

Có I là TĐ của BC\(\Rightarrow\overrightarrow{EB}+\overrightarrow{EC}=\overrightarrow{BC}=0\) (1)

Có I là TĐ của MN \(\Rightarrow\overrightarrow{EM}+\overrightarrow{EN}=\overrightarrow{MN}=0\) (2)

Từ (1) và (2)\(\Rightarrowđpcm\)

20 tháng 7 2019
https://i.imgur.com/rohj4lt.jpg

Bài 3: 

Tham khảo:

image

30 tháng 3 2017

Ta có: \(\overrightarrow{MB}=3\overrightarrow{MC}\Rightarrow\overrightarrow{MB}=3\left(\overrightarrow{MB}+\overrightarrow{BC}\right)\)

\(\Rightarrow\overrightarrow{MB}=3\overrightarrow{MB}+3\overrightarrow{BC}\)

\(\Rightarrow-\overrightarrow{MB}=3\overrightarrow{BC}\)

\(\Rightarrow\overrightarrow{BM}=\dfrac{2}{3}\overrightarrow{BC}\). Mà \(\overrightarrow{BC}=\overrightarrow{AC}-\overrightarrow{AB}\) nên \(\overrightarrow{BM}=\dfrac{2}{3}\left(\overrightarrow{AC}-\overrightarrow{AB}\right)\)

Theo quy tắc 3 điểm, ta có

\(\overrightarrow{AM}=\overrightarrow{AB}+\overrightarrow{BM}\Rightarrow\overrightarrow{AM}=\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}-\dfrac{3}{2}\overrightarrow{AB}\)

\(\Rightarrow\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{AB}+\dfrac{3}{2}\overrightarrow{AC}\) hay \(\overrightarrow{AM}=-\dfrac{1}{2}\overrightarrow{u}+\dfrac{3}{2}\overrightarrow{v}\)

30 tháng 3 2017

Trước hết ta có

= 3 => = 3 ( +)

=> = 3 + 3

=> - = 3

=> =

= - nên = (- )

Theo quy tắc 3 điểm, ta có

= + => = + -

=> = - + hay = - +