Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
Đáp án: C
Thay lần lượt tọa độ của ba điểm A, B, C vào đường thẳng Δ ta được:
A: 1 - 2.0 + 1 = 2 > 0
B: 2 - 2.(-3) + 1 = 9 > 0
C: -2 - 2.4 + 1 = -9 < 0
Ta thấy: A và C nằm khác phía so với Δ nên Δ cắt cạnh AC
B và C nằm khác phía so với Δ nên Δ cắt cạnh BC
a) Ta có: \(\overrightarrow{\text{BC}}\) = (1; -7)
\(\overrightarrow{\text{ }n_{\text{BC}}}\)= (7; 1)
PTTQ: 7(x - 5) + 1(y - 5) = 0
=> 7x - 35 + y - 5 = 0
=> 7x + y - 40 = 0
b) Ta có: \(\overrightarrow{\text{AC}}\) = (8; -6)
=> \(\text{AC}=\sqrt{8^2+6^2}=10\)
Phương trình đường tròn là:
(x + 2)2 + (y - 4)2 = 100
c) (C): (x + 2)2 + (y - 4)2 = 100
Ta có: \(\text{AM}=\sqrt{2^2+5^2}=\sqrt{29}\)
Để HK ngắn nhất => d(A; Δ) lớn nhất
=> d(A; Δ) = AM => AM ⊥ Δ
=> \(\overrightarrow{\text{n}_{\Delta}}\) = \(\overrightarrow{\text{AM}}\)
=> \(\overrightarrow{\text{n}_{\Delta}}\) = (-2; -5)
=> \(\text{2}\left(x+4\right)+5\left(y+1\right)=0\)
=> \(\text{ }2x+5y+13=0\)
Chọn B.
Ta có: Nửa chu vi tam giác là: (3 + 4 + 5) : 2 = 6.
Áp dụng công thức Hê rông:
Cho tam giác ABC có BC=a, CA=b, BA=c và diện tích là S. Biết \(S=b^2-\left(a-c\right)^2\). Tính tanB
Ta có:
\(S=b^2-\left(a-c\right)^2\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=a^2+c^2-2ac\cos B-a^2-c^2+2ac\)
\(\Leftrightarrow\dfrac{1}{2}ac\sin B=2ac\left(1-c\text{os}B\right)\)
\(\Leftrightarrow\sin B=4\left(1-c\text{os}B\right)\Leftrightarrow c\text{os}B=1-\dfrac{1}{4}sinB\left(1\right)\)
Mặt \(\ne:sin^2B+c\text{os}^2B=1\)
\(\Leftrightarrow sin^2B+\left(1-\dfrac{1}{4}sinB\right)^2=1\)
\(\Leftrightarrow\dfrac{17}{16}sin^2B-\dfrac{1}{2}sinB=0\)
\(\Leftrightarrow sinB=\dfrac{8}{17}\left(sinB>0\right)\)
Kết hợp với (1) ta đc: \(c\text{os}B=\dfrac{15}{17}\Rightarrow tanB=\dfrac{8}{15}\)
\(p=\dfrac{a+b+c}{2}=15\)
\(S=\sqrt{p\left(p-a\right)\left(p-b\right)\left(p-c\right)}=\sqrt{15\left(15-8\right)\left(15-10\right)\left(15-12\right)}=15\sqrt{7}\)
\(cosA=\dfrac{b^2+c^2-a^2}{2bc}=\dfrac{10^2+12^2-8^2}{2.10.12}=\dfrac{3}{4}\Rightarrow A\approx41^024'\)
Ta có A B C ^ = 180 0 − B A C ^ + A C B ^ = 75 ° = A C B ^ .
Suy ra tam giác ABC cân tại A nên AB = AC = 4.
Diện tích tam giác ABC là S Δ A B C = 1 2 A B . A C sin B A C ^ = 4.
Chọn C