K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Lời giải:

a. Ta thấy $\widehat{AHC}=90^0$ (góc nt chắn nửa đường tròn $(O)$ - chắn đường kính AC)

$\Rightarrow AH\perp HC$ hay $AH\perp BC$ (đpcm) 

b. Do tam giác $BHA$ vuông tại $H$ nên đường trung tuyến $HM$ bằng nửa cạnh huyền $BA$

$\Rightarrow HM=MA$

$\Rightarrow \widehat{MHA}=\widehat{MAH}=\widehat{BAH}=90^0-\widehat{HAC}=\widehat{HCA}$

$\Rightarrow HM$ là tiếp tuyến $(O)$.

c. 

Dễ thấy $\widehat{ADC}=90^0$ (góc nt chắn nửa đường tròn)

$\Rightarrow DA\perp DC$

$\Rightarrow \frac{DA}{DC}=\cot \widehat{DAC}=\cot A_1(*)$

$\frac{DC}{DE}=\cot \widehat{DCE}=\cot C_1$

Mà $\widehat{C_1}=90^0-\widehat{E_1}=90^0-\widehat{E_2}=\widehat{A_2}=\widehat{A_1}$

$\Rightarrow \frac{DC}{DE}=\cot C_1=\cot A_1(**)$

Từ $(*); (**)\Rightarrow \frac{DA}{DC}=\frac{DC}{DE}\Rightarrow DA.DE=DC^2$ 

AH
Akai Haruma
Giáo viên
27 tháng 9 2023

Hình vẽ:

a: Xét (O) có

ΔAHB nội tiếp

AB là đường kính

Do đó: ΔAHB vuông tại H

hay AH⊥BC

b: Sửa đề: M là trung điểm của AC

Ta có: ΔAHC vuông tại H

mà HM là đường trung tuyến

nên HM=AM=AC/2

Xét ΔMAO và ΔMHO có

MA=MH

MO chung

OA=OH

Do đó: ΔMAO=ΔMHO

Suy ra: \(\widehat{MAO}=\widehat{MHO}=90^0\)

hay HM là tiếp tuyến của (O)

20 tháng 12 2022

a: BC=10cm

=>AH=6*8/10=4,8cm

b: ΔAHB vuông tại H

mà HM là trung tuyến

nên HM=AM

Xét ΔOAM và ΔOHM có

OA=OH

MA=MH

OM chung

Do đó: ΔOAM=ΔOHM

=>góc OHM=90 độ

=>MH là tiếp tuyến của (O)

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn...
Đọc tiếp

1. cho tam giác ABC.Tia Ax nằm khác phía với AC đối với đường thẳng AB thỏa mãn góc xAB bằng góc ACB.chứng minh Ax là tiếp tuyến của đường tròn ngoại tiếp tam giác ABC

2.cho nửa đường tròn (O) đường kính AB trên đoạn AB lấy điểm M,gọi H là trung điểm của AM.đường thẳng qua H vuông góc với AB cắt (O) tại C .đường tròn đường kính MB cắt BC tại I. CM HI là tiếp tuyến của đường tròn đường kính MB

3.cho nửa đường tròn tâm O đường kính AB, C thuộc nửa đường tròn.vẽ CH vuông góc với AB(H thuộc AB),M là trung điểm CH,BM cắt tiếp tuyến Ax của O tại P .chứng minh PC là tiếp tuyến của (O)

4.cho đường tròn O đường kính AB, M là một điểm trên OB.đường thẳng qua M vuông góc với AB tại M cắt O tại C và D. AC cắt BD tại P,AD cắt BC tại Q,AB cắt PQ tai I chứng minh IC,ID là tiếp tuyến của (O)

5.cho tam giác ABC nội tiếp đường tròn đường kính BC (AB<AC).T là một điểm thuộc OC.đường thẳng qua T vuông góc với BC cắt AC tại H và cắt tiếp tuyến tại A của O tại P.BH cắt (O) tại D. chứng minh PD là tiếp tuyến của O

6.cho tam giác ABC nội tiếp đường tròn O. phân giác góc BAC cắt BC tại D và cắt (O) tại M chứng minh BM là tiếp tuyến của đường tròn ngoại tiếp tam giác ABD

0
Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!Bài 1: Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại Hb) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MACc) Tia BM cắt AO tại N. Chứng minh NA=NHd) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM....
Đọc tiếp

Làm giúp mình 2 bài này với, mai mình phải nộp rồi!!!

Bài 1: 
Từ điểm A nằm ngoài đường tròn (O;R), vẽ 2 tiếp tuyến AB, AC với đường tròn.
a) Chứng minh tứ giác OBAC nội tiếp và OA vuông góc BC tại H
b) Vẽ đường kính CD của đường tròn (O;R), AD cắt (O) tại M. Chứng minh: góc BHM = góc MAC
c) Tia BM cắt AO tại N. Chứng minh NA=NH
d) Vẽ ME là đường kính đường tròn (O), gọi I là trung điểm DM. Chứng minh: 3 điểm B, I, E thẳng hàng và BI song song MH.

Bài 2: 
Cho tam giác ABC vuông tại A. Vẽ đường tròn tâm O đường kính AC cắt BC tại H. Gọi I là trung điểm của HC. Tia OI cắt (O) tại F
a) Chứng minh AH là đường cao của tam giác ABC và AB^2= BH. BC
b) Chứng minh: Tứ giác ABIO nội tiếp
c) Chứng minh: AF là tia phân giác của góc HAC
d) AF cắt BC tại D. Chứng minh: BA=BD

0