K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

3 tháng 5 2019

12 tháng 2 2022

 như cc

31 tháng 12 2017

Giải sách bài tập Toán 7 | Giải bài tập Sách bài tập Toán 7

+)Theo giả thiết ta có: AB = AC và BD = CE nên:

AB + BD = AC + CE hay AD = AE.

+) Xét ΔABE và ΔACD có:

AB = AC (gt)

∠A chung

AE = AD (chứng minh trên)

⇒ ΔABE = ΔACD (c.g.c)

⇒ BE = CD (2 cạnh tương ứng) (1)

và ∠ABE = ∠ACD (2 góc tương ứng) (2)

Tam giác ABC cân nên ∠B1 = ∠C1. (3)

Từ (2) và (3) ⇒ ∠ABE - ∠B1 = ∠ACD - ∠C1, tức là ∠B2 = ∠C2.

⇒ ΔBIC cân tại I ⇒ IB = IC. (4)

Từ (1) và (4) suy ra BE - IB = CD – IC, tức là IE = ID.

25 tháng 1 2016

Nối D với E

Ta có tam giác ADE cân vì ....

=> góc ADE = góc AED = (180-góc A )/2

mà góc ABC= góc ACB = (180-góc A)/2

=> góc ABC = ADE

maf hai góc này ơr vị trí ĐV của BC và DE

=> BC//DE

tuwf đấy suy ra hai góc bằng nhau và xét tam giác BID và CIE rồi suy ra hai góc tương ứng

4 tháng 2 2016

Mik chưa học lớp 7 sorry bạn

4 tháng 2 2016

a/IB ; IC = nhau vì có đoạn thẳng BC ở giữa

ID= IE vì có tia gốc là tia IB và IC = nhau

b/ vì có d.thẳng BE cắt CD tại I

c / thẳng hàng vi tam giac ABC cân tại A, M là trug điểm của BC và I là giao điểm cua CD và BE

olm duyệt đi

15 tháng 5 2017

A B C D E M I

19 tháng 5 2017

I A B C D E M 1 2 2 1

a) Vì AB = AC (do \(\Delta ABC\) cân tại A)

BD = CE (gt)

=> AD = AE

Xét hai tam giác ABE và ACD có:

AB = AC (do \(\Delta ABC\) cân tại A)

\(\widehat{A}\): góc chung

AD = AE (cmt)

Vậy: \(\Delta ABE=\Delta ACD\left(c-g-c\right)\)

Suy ra: BE = CD (hai cạnh tương ứng) (1)

\(\widehat{ABE}=\widehat{ACD}\) (hai góc tương ứng) (2)

\(\Delta ABC\) cân tại A nên \(\widehat{B_1}=\widehat{C_1}\) (3)

Từ (2) và (3) suy ra:

\(\widehat{ABE}-\widehat{B_1}=\widehat{ACD}-\widehat{C_1}\) hay \(\widehat{B_2}=\widehat{C_2}\)

Vậy \(\Delta BIC\) cân tại I, suy ra: IB = IC (4)

Từ (1) và (4) suy ra:

BE - IB = CD - IC hay IE = ID

b) Các tam giác cân ABC và ADE có chung góc ở đỉnh A nên \(\widehat{B_1}=\widehat{ADE}\) (hai góc đồng vị)

Do đó: BC // DE

c) Xét hai tam giác BIM và CIM có:

MB = MC (gt)

\(\widehat{B_2}=\widehat{C_2}\)(cmt)

IB = IC (do \(\Delta BIC\) cân tại I)

Vậy: \(\Delta BIM=\Delta CIM\left(c-g-c\right)\)

Suy ra: \(\widehat{IMB}=\widehat{IMC}\) (hai góc tương ứng)

\(\widehat{IMB}+\widehat{IMC}=180^o\) (kề bù)

Nên \(\widehat{IMB}=\widehat{IMC}\) = 90o (1)

Ta lại có: \(\widehat{IMB}+\widehat{AMB}=180^o\) (kề bù)

\(\widehat{IMB}=90^o\)

\(\Rightarrow\widehat{AMB}=90^o\) (2)

Từ (1) và (2) suy ra: ba điểm A, M, I thẳng hàng (đpcm).

a: Ta có: \(\widehat{ABC}+\widehat{DBC}=180^0\)(hai góc kề bù)

\(\widehat{ACB}+\widehat{BCE}=180^0\)(hai góc kề bù)

mà \(\widehat{ABC}=\widehat{ACB}\)

nên \(\widehat{DBC}=\widehat{BCE}\)

Xét ΔDBC và ΔECB có

BD=CE

\(\widehat{DBC}=\widehat{ECB}\)

BC chung

Do đó: ΔDBC=ΔECB

=>DC=EB 

ΔDBC=ΔECB

=>\(\widehat{BCD}=\widehat{CBE}\)

=>\(\widehat{IBC}=\widehat{ICB}\)

=>ΔIBC cân tại I

=>IB=IC

Ta có: IB+IE=BE

IC+ID=CD
mà IB=IC và BE=CD

nên IE=ID

b: Xét ΔABC có \(\dfrac{AB}{BD}=\dfrac{AC}{CE}\)

nên BC//DE
c: Ta có: AB=AC

=>A nằm trên đường trung trực của BC(1)

Ta có: MB=MC

=>M nằm trên đường trung trực của BC(2)

Ta có: IB=IC

=>I nằm trên đường trung trực của BC(3)

Từ (1),(2),(3) suy ra A,M,I thẳng hàng

9 tháng 3 2019

Hình vẽ  A B C E F 10 cm 12 cm I

9 tháng 3 2019

a) Tam giác ABC cân tại A

AI là đường cao của tam giác ABC => AI cũng là đường trung tuyến của tam giác ABC

=> IB = IC

b) Ta có: \(IB=IC=\frac{BC}{2}=\frac{12}{2}=6\) (cm)

Tam giác ABI vuông tại I

Áp dụng định lý Pytago suy ra:

\(AI^2+BI^2=AB^2\)

\(\Rightarrow AI=\sqrt{AB^2-BI^2}=\sqrt{10^2-6^2}=8\) (cm)

c) Tam giác ABC cân tại A => AB = AC

Ta có: BE = CF suy ra: AB+BE = AC+CF

                              => AE    =  AF

                               => Tam giác AEF cân tại A

                               => \(\widehat{F}=\widehat{E}\)

Và tam giác ABC cân tại A => \(\widehat{B}=\widehat{F}\)

=> \(\widehat{ABC}=\widehat{F};\widehat{ACB}=\widehat{F}\)

Mà \(\widehat{ABC}\) và \(\widehat{F}\) ở vị trí so le trong => BC // EF

=> đpcm