K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Xét ΔAIB và ΔAIC có

AI chung

IB=IC

AB=AC

Do đó: ΔAIB=ΔAIC

=>\(\widehat{AIB}=\widehat{AIC}\)

mà \(\widehat{AIB}+\widehat{AIC}=180^0\)(hai góc kề bù)

nên \(\widehat{AIB}=\widehat{AIC}=\dfrac{180^0}{2}=90^0\)

=>AI\(\perp\)BC

Xét ΔABC có

BM,CN lần lượt là các đường trung tuyến

BM cắt CN tại I

=>I là trọng tâm

=>AI là đường trung tuyến của ΔACB

ΔABC cân tại A

mà AI là đường trung tuyến

nên AI vuông góc CB

=>AI là trung trực của BC

a: Xet ΔABI và ΔACI có

AB=AC

BI=CI

AI chung

=>ΔABI=ΔACI

b: ΔABC cân tại A

mà AI là trung tuyến

nên AI vuông góc BC

c: GI=1/3*AI=4cm

29 tháng 1 2022

mình hong bik làm

7 tháng 5 2016

Xét tam giác ABD và ACD có 

AB=AC (tam giác ABC cân tại A)

Góc B = góc C ( 2 góc ở đáy của tam giác cân)

Canh AD chung 

Suy ra tam giác ABD= tam giác ACD

Nen goc BAD=CAD(2 goc tuong ung)

Nên AD là tia phân giác của góc A

Suy ra AD là đường phân giác ,đường cao,đường trung trực,đường trung tuyến(tính chất tam giác cân)

Nhanh lên mọi người ơi!!

7 tháng 4 2019

AB:=a

AC:=b

ta có 

BD^2=a^2+(1/2b)^2

CE^2=(1/2a)^2+b^2

BD^2+CE^2=(a^2+b^2)5/4=5/4BC^2(dpcm)

8 tháng 4 2019

cảm ơn bn nhiều nha

`a,`

Vì `\Delta ABC` cân tại A

`-> \text {AB = AC, }` $\widehat {B} = \widehat {C}$

Xét `\Delta ABH` và `\Delta ACH`:

`\text {AB = AC}`

$\widehat {B} = \widehat {C}$

$\widehat {AHB} = \widehat {AHC} (=90^0) (\text {AH là đường cao của} \Delta ABC)$

`=> \Delta ABH = \Delta ACH (ch-gn)`

`b,`

Vì `\Delta ABH = \Delta ACH (a)`

`->` $\widehat {BAH} = \widehat {CAH} (\text {2 cạnh tương ứng})$

`-> \text {AH là đường phân giác của}` `\Delta ABC`

`c,`

Vì `\Delta ABH = \Delta ACH (a)`

`-> \text {HB = HC}`

Ta có:

`\text {AH} \bot \text {BC}`

`\text {HB = HC}`

`-> \text {AH là đường trung trực của}` `\Delta ABC`.

loading...

a: Xét ΔKBC vuông tại K và ΔHCB vuông tại H có

BC chung

\(\widehat{KBC}=\widehat{HCB}\)

Do đó: ΔKBC=ΔHCB

Suy ra: \(\widehat{KCB}=\widehat{HBC}\)

hay ΔIBC cân tại I

b: Xét ΔABI và ΔACI có

AB=AC

AI chung

BI=CI

Do đó: ΔABI=ΔACI

Suy ra: \(\widehat{BAI}=\widehat{CAI}\)

hay AI là tia phân giác của góc A

a: Xét ΔABC có

AD,BE là đường cao

AD cắt EB tại H

=>H là trực tâm

=>CH vuông góc AB

b: ΔABC cân tại A

mà AD là trung tuyến

nên AD vuông góc BC

Xét tứ giác AKBD có

góc AKB=góc ADB=góc KBD=90 độ

=>AKBD là hình chữ nhật

=>góc KAD=90 độ