K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

23 tháng 12 2016

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`

30 tháng 12 2017

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

EBC = DCB (cmt)

BC là cạnh chung

ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180o - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180o - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

c) bớt ED đi, c/m ở trên r`

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

tham khảo á

16 tháng 9 2018

làm bừa thui,ai tích mình mình tích lại

Số số hạng là : 

Có số cặp là :

50 : 2 = 25 ( cặp )

Mỗi cặp có giá trị là :

99 - 97 = 2 

Tổng dãy trên là :

25 x 2 = 50

Đáp số : 50

Hình tự vẽ nha

Tam giác ABC cân tại A=> góc B=góc C

=>. 1/2 góc B = 1/2 góc C 

(=) góc ABE=góc ACD

a) 

xét tam giác ABD và tam giác ACE có

AB=AC ( tam giác ABC cân tại A)

góc A chung

góc ABE=góc ACD( Cmt)

=> tam giác ABD=tam giác ACE

=> AE=AD(cặp cạnh tương ứng)

=>tam giác ADE  cân tại A

b) 

Tam giác ABC cân tại A=> góc ABC = (180o - góc A)/2  (1)

tam giác ADE  cân tại A=> góc ADE=(180o - góc A)/2  (2)

từ (1) và (2) => góc ABC= góc ADE 

mà 2 góc này nằm ở vị trí đồng vị => DE // BC (ĐPCM)

c) 

16 tháng 1 2020

câu c đâu r a???

16 tháng 1 2020

Bạn tham khảo nè:

https://olm.vn/hoi-dap/detail/67148628518.html

Học tốt

17 tháng 1 2020

-Trl

Tham khảo link của bạn Yumina nhha -)))

_Chúc bạn học tốt

:)))

9 tháng 7 2017

ai k mình k lại nhưng phải lên điểm mình tích gấp đôi

11 tháng 7 2017

A E D B C

a) Xét \(\Delta EBC\)và \(\Delta DCB\)có:

    C = B,    CB chung,   EBC = DCB  \(\Rightarrow\)   \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)EC = DB

      \(\Rightarrow\)AE = AD \(\Rightarrow\)\(\Delta AED\)cân.

b) Ta có:

     C = \(\frac{180^o-A}{2}\),    E = \(\frac{180^o-A}{2}\)\(\Rightarrow\)C = E \(\Rightarrow\)DE // BC ( đồng vị )

c) Vì \(\Delta EBC\)\(\Delta DCB\)\(\Rightarrow\)BE = DC

16 tháng 9 2018

a) Tam giác ABC cân tại A nên ABC = ACB (t/c tam giác cân)

=> ABC/2 = ACB/2

Mà ABD = CBD = ABC/2

ACE = BCE = ACB/2

Nên ABD = CBD = ACE = BCE

Xét t/g EBC và t/g DCB có:

góc EBC = DCB (cmt)

BC là cạnh chung

góc ECB = DBC (cmt)

Do đó, t/g EBC = t/g DCB (g.c.g)

=> BE = CD (2 cạnh tương ứng)

Mà AB = AC (gt) nên AB - BE = AC - CD

=> AE = AD

=> Tam giác AED cân tại A (đpcm)

b) tam giác ABC cân tại A => BAC = 180 độ  - 2.ABC (1)

Tam giác EAD cân tại A => EAD = 180 độ  - 2.AED (2)

Từ (1) và (2) => ABC = AED

Mà ABC và AED là 2 góc ở vị trí đồng vị nên ED // BC (đpcm)

30 tháng 3 2020

A A A B B B C C C D D D E E E 1 2 1 2 1

a) BD và CE theo thứ tự là phân giác của góc B và góc C (gt) nên \(\widehat{B_1}=\widehat{B_2}=\frac{1}{2}\widehat{B},\widehat{C_1}=\widehat{C_2}=\frac{1}{2}\widehat{C}\)

mà \(\widehat{B}=\widehat{C}\)(hai góc ở đáy của \(\Delta\)cân ABC)

do đó \(\widehat{B_1}=\widehat{C_2}\)

\(\widehat{A}\)chung

=> \(\Delta\)ABD = \(\Delta\)ACE(g.c.g)

=> AD = AE(hai cạnh tương ứng)

=> \(\Delta\)ADE cân ở A

b) \(\Delta\)AED cân tại đỉnh A nên \(\widehat{AED}=\widehat{ADE}=\frac{180^0-\widehat{A}}{2}\left(1\right)\)

\(\Delta\)ABC cân tại đỉnh A nên \(\widehat{ABC}=\widehat{ACB}=\frac{180^0-\widehat{A}}{2}\left(2\right)\)

Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\)

Vậy DE // BC(hai góc so le trong) mà \(\widehat{B_1}=\widehat{B_2}\), do đó \(\widehat{A}=60^0\)\(\widehat{D_1}=\widehat{B_2}\)=> \(\Delta\)BED cân ở đỉnh E,do đó BE = ED(3)

c) \(\Delta\)AEC cân tại đỉnh A nên \(\widehat{AEC}=\widehat{ACE}=\frac{180^0-\widehat{A}}{2}\)

\(\Delta\)ABD cân tại đỉnh A nên \(\widehat{ABD}=\widehat{ADB}=\frac{180^0-\widehat{A}}{2}\)

=> \(\widehat{AEC}=\widehat{ABD}\)

=> CE // BD(hai góc so le trong) 

Mà \(\widehat{C_1}=\widehat{C_2}\),do đó \(\widehat{A}=60^0,\widehat{D_1}=\widehat{C_2}\)

=> \(\Delta\)CED cân ở đỉnh D nên ED = DC(4)

Từ (3) và (4) => BE = ED = DC