Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a) Xét tứ giác AMBE có
D là trung điểm của đường chéo AB(gt)
D là trung điểm của đường chéo ME(M và E đối xứng nhau qua D)Do đó: AMBE là hình bình hành(Dấu hiệu nhận biết hình bình hành)
Ta có: AMBE là hình bình hành(cmt)
nên AM//BE và AM=BE(Hai cạnh đối của hình bình hành AMBE)
mà \(C\in EB\) và EB=EC(E là trung điểm của BC)
nên AM//CE và AM=CE
Xét tứ giác AMEC có
AM//CE(cmt)
AM=CE(cmt)
Do đó: AMEC là hình bình hành(Dấu hiệu nhận biết hình bình hành)
b) Ta có: ΔABC cân tại A(gt)
mà AE là đường trung tuyến ứng với cạnh đáy BC(E là trung điểm của BC)
nên AE là đường cao ứng với cạnh BC(Định lí tam giác cân)
⇔AE⊥BC
hay \(\widehat{AEB}=90^0\)
Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)(cmt)
nên AMBE là hình chữ nhật(Dấu hiệu nhận biết hình chữ nhật)
c) Ta có: E là trung điểm của BC(gt)
nên \(BE=\dfrac{BC}{2}=\dfrac{12}{2}=6\left(cm\right)\)
Ta có: ΔABE vuông tại E(\(\widehat{AEB}=90^0\))
nên \(S_{ABE}=\dfrac{AE\cdot EB}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
a: Xét ΔABC có
D là tđiểm của AB
E là tđiểm của AC
Do đó: DE là đường trung bình
=>DE//FC và DE=FC
hay DECF là hình bình hành
Bài 1:
A B C D M N P Q E F
a) Xét tam giác ABC có M là trung điểm của AB (gt) ,E là trung điểm của AC (gt)
\(\Rightarrow ME\)là đường trung bình tam giác ABC
\(\Rightarrow ME=\frac{1}{2}BC\left(tc\right)\left(1\right)\)
Xét tam giác ADC có E là trung điểm của AC (gt) ,P là trung điểm của DC (gt)
\(\Rightarrow PE\)là đường trung bình của tam giác ADC
\(\Rightarrow PE=\frac{1}{2}AD\left(tc\right)\left(2\right)\)
mà \(AD=BC\left(gt\right)\left(3\right)\)
Từ (1) , (2) và (3) \(\Rightarrow EM=PE\)
CMTT: \(PE=FP,FM=ME\)
\(\Rightarrow ME=EP=PF=FM\)
Xét tứ giác MEPF có:
\(ME=EP=PF=FM\left(cmt\right)\)
\(\Rightarrow MEPF\)là hình thoi ( dhnb)
b) Vì \(MEPF\)là hình thoi (cmt)
\(\Rightarrow FE\)giao với MP tại trung điểm mỗi đường (tc) (4)
Xét tam giác ADB có M là trung điểm của AB(gt) ,Q là trung điểm của AD (gt)
\(\Rightarrow MQ\)là đường trung bình của tam giác ADB
\(\Rightarrow MQ//DB,MQ=\frac{1}{2}DB\left(tc\right)\left(5\right)\)
Xét tam giác BDC có N là trung điểm của BC(gt) , P là trung điểm của DC(gt)
\(\Rightarrow NP\)là đường trung bình của tam giác BDC
\(\Rightarrow NP//DB,NP=\frac{1}{2}DB\left(tc\right)\left(6\right)\)
Từ (5) và (6) \(\Rightarrow MQ//PN,MQ=PN\)
Xét tứ giác MQPN có \(\Rightarrow MQ//PN,MQ=PN\)
\(\Rightarrow MQPN\)là hình bình hành (dhnb)
\(\Rightarrow MP\)giao QN tại trung điểm mỗi đường (tc) (7)
Từ (4) và (7) \(\Rightarrow MP,NQ,EF\)cắt nhau tại một điểm
c) Xét tam giác ABD có Q là trung điểm của AD (gt), F là trung điểm của BD(gt)
\(\Rightarrow QF\)là đường trung bình của tam giác ADB
\(\Rightarrow QF//AB\left(8\right)\)
CMTT: \(FN//CD\)và \(EN//AB\)
Mà Q,F,E,N thẳng hàng
\(\Rightarrow AB//CD\)
Vậy để Q,F,E,N thẳng hàng thì tứ giác ABCD phải thêm điều kiện \(AB//CD\)
b a c e f d i
xét tam giác abc có e là trung điểm của ab (gt)
f là trunng điểm của ac (gt)
=> ef là đường tuẻng bình của tam giác abc(dn....)
=> ef//bc=>efcb là hiình thang
b)có ef là đường trung bình của tam giác abc (cmt)
=> ef=1/2 bc hay ef+ef=bc mà ef=de =>de+ef=bc => df=bc mà df//bc( vì ef//bc cmt)
=> dfcb là hình bình hành (dn...)
a: Xét tứ giác AMCD có
I là trung điểm của AC
I là trung điểm của MD
Do đó: AMCD là hình bình hành
mà \(\widehat{AMC}=90^0\)
nên AMCD là hình chữ nhật
a: Xét tứ giác AEBM có
D là trung điểm của AB
D là trung điểm của ME
Do đó:AEBM là hình bình hành
Suy ra: AM//BE và AM=BE
=>AM//CE và AM=CE
hay ACEM là hình bình hành
b: Xét hình bình hành AMBE có \(\widehat{AEB}=90^0\)
nên AMBE là hình chữ nhật
c: BC=12cm
=>BE=6cm
\(S_{AEB}=\dfrac{BE\cdot AE}{2}=\dfrac{6\cdot8}{2}=24\left(cm^2\right)\)
Bn tự vẽ hình nha!
A, Xét tam giác ABC
e là trung điểm AB -gt
f là trung điểm AC-gt
-> EF là đg trung bình của tam giác ABC
->EF song song BC;EF=1/2 BC(đpcm)
B,
TA có tam giác abc cân tại a
mà am là đg trung tuyến(gt)
-> am là đg cao hay góc AMC bằng 90 độ
Xét tứ giác AMCK có
AF=FC=1/2AC(f là trung điểm AC - gt)
FK=FM=1/2KM( M đối K qua F- gt)
mà AC cắt KM tại F
->AMCK là hình bình hành
Ta có AMCK là hình bình hành(cmt)
mà có góc AMC= 90 độ ( cmt)
->AMCK là hcn( HÌNH bình hành có 1 góc vuông)
C, TA có AM là đg trung tuyến hay M là trung điểm AC
-> MB=MC
mà MC =AK( do AMCK là hcn-cmt)
-> MB=AK
ta có
AC=KM(do AMCK là hình chữ nhật)
mà AB= AC( tam giác ABC là tam giác cân-gt)
->KM=AB
Xét tứ giác ABMK có
AK=BM(Cmt)
AB=KM(cmt)
-> ABKM là hbh-đpcm
Xong rùi nhe bn