K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)a) Chứng minh AD là trung trực của đoạn EF.[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG...
Đọc tiếp

Bài 1.Cho tam giác ABC có trọng tâm G. Đường thẳng d đi qua G cắt hai cạnh AB và AC. CMR khoảng cách từ A đến d bằng tổng các khoảng cách từ B và C đến d.
Bài 2. Cho tam giác ABC cân tại A và đường cao AD. Từ D dựng DE vuông góc AB và DF vuông góc AC (E thuộc AB, F thuộc AC)
a) Chứng minh AD là trung trực của đoạn EF.
[B]b) [/B]Trên tia đối của tia DE lấy điểm G sao cho DG=DE. Chứng minh tam giác CEG vuông.
Bài 3. Cho tam giác ABC, vẽ tam giác vuông cân ABD cân tại B,A và D ở hai nửa mặt phẳng đối nhau bờ là đường thẳng BC. Vẽ tam giác vuông cân CBG cân tại B,G và A ở cùng nửa mặt phẳng bờ là đường thẳng BC. Chứng minh rằng GA vuông góc vớ DC.
Bài 4.Cho tam giác ABC trên tia đối của tia BA, CA lần lượt lấy điểm P,Q sao cho BP=CQ. Gọi M,N lần lượt là trung điểm của các đoạn BC,PQ. Đường thẳng MN cắt đường thẩngB,AC theo thứ tự tại B' và C'. Chứng minh rằng tam giác B'AC cân.

1
22 tháng 2 2020

Ta có: ΔABC đều, D ∈ AB, DE⊥AB, E ∈ BC
=> ΔBDE có các góc với số đo lần lượt là: 300
; 600
; 900
 => BD=1/2BE
Mà BD=1/3BA => BD=1/2AD => AD=BE => AB-AD=BC-BE (Do AB=BC)
=> BD=CE. 
Xét ΔBDE và ΔCEF: ^BDE=^CEF=900
; BD=CE; ^DBE=^ECF=600
=> ΔBDE=ΔCEF (g.c.g) => BE=CF => BC-BE=AC-CF => CE=AF=BD
Xét ΔBDE và ΔAFD: BE=AD; ^DBE=^FAD=600
; BD=AF => ΔBDE=ΔAFD (c.g.c)
=> ^BDE=^AFD=900
 =>DF⊥AC (đpcm).
b) Ta có: ΔBDE=ΔCEF=ΔAFD (cmt) => DE=EF=FD (các cạnh tương ứng)
=> Δ DEF đều (đpcm).
c) Δ DEF đều (cmt) => DE=EF=FD. Mà DF=FM=EN=DP => DF+FN=FE+EN=DE+DP <=> DM=FN=EP
Lại có: ^DEF=^DFE=^EDF=600=> ^PDM=^MFN=^NEP=1200
 (Kề bù)
=> ΔPDM=ΔMFN=ΔNEP (c.g.c) => PM=MN=NP => ΔMNP là tam giác đều.
d) Gọi AH; BI; CK lần lượt là các trung tuyến của  ΔABC, chúng cắt nhau tại O.
=> O là trọng tâm ΔABC (1)
Do ΔABC đều nên AH;BI;BK cũng là phân giác trong của tam giác => ^OAF=^OBD=^OCE=300
Đồng thời là tâm đường tròn ngoại tiếp tam giác => OA=OB=OC
Xét 3 tam giác: ΔOAF; ΔOBD và ΔOCE:
AF=BD=CE
^OAF=^OBD=^OCE      => ΔOAF=ΔOBD=ΔOCE (c.g.c)
OA=OB=OC
=> OF=OD=OE => O là giao 3 đường trung trực  Δ DEF hay O là trọng tâm Δ DEF (2)
(Do tam giác DEF đề )
/

(Do tam giác DEF đều)
Dễ dàng c/m ^OFD=^OEF=^ODE=300
 => ^OFM=^OEN=^ODP (Kề bù)
Xét 3 tam giác: ΔODP; ΔOEN; ΔOFM:
OD=OE=OF
^ODP=^OEN=^OFM          => ΔODP=ΔOEN=ΔOFM (c.g.c)
OD=OE=OF (Tự c/m)
=> OP=ON=OM (Các cạnh tương ứng) => O là giao 3 đường trung trực của  ΔMNP
hay O là trọng tâm ΔMNP (3)
Từ (1); (2) và (3) => ΔABC; Δ DEF và ΔMNP có chung trọng tâm (đpcm).

25 tháng 2 2018

Tự vẽ hình lấy chứ hình nó khó vẽ trên này lắm thông cảm 

 a) P và Q là tâm đường tròn nội tiếp các tam giác đồng dạng AHB và CHA nên

\(\frac{HP}{HQ}=\frac{AB}{AC}\)nên \(\Delta HPQ~\Delta ABC\left(c-g-c\right)\)

b) Từ câu a suy ra \(\widehat{HPQ}=\widehat{C}\)mà \(\widehat{C}=\widehat{A_1}\)

Nên \(\widehat{HPQ}=\widehat{A_1}\)( 1 )

Tứ giác HPKQ có \(\widehat{PHQ}=\widehat{PKQ}=90^o\)nên là tứ giác nội tiếp, suy ra \(\widehat{HPQ}=\widehat{HKP}\)( 2 )

Từ (1) VÀ (2) suy ra \(\widehat{A_1}=\widehat{HKP}\)do đó KP // AB. Chứng minh tương tự, KQ // AC.

c) Ta có : \(\widehat{C}=\widehat{HKP}=\widehat{MKP}\)tự chứng minh \(\widehat{MKP}=\widehat{M_1}\)(sử dụng kết quả ở câu b).

d) Ta có : \(\widehat{A_1}=\widehat{M_1}\left(=\widehat{C}\right)\)nên KM = KA. Tương tự KP =KA. Do đó năm điểm A, M, P, Q, N thuộc đường tròn (K; KA).

e) Từ câu a suy ra \(\widehat{HQP}=\widehat{C}\)nên HQEC là tứ giác nội tiếp, do đó \(\widehat{QEA}=\widehat{QHC}=45^o\)

Tam giác ADE có : \(\widehat{E}=45^o\)

\(\Rightarrow\) ADE là tam giác vuông cân.

25 tháng 2 2018

à câu cuối còn một cách nữa :)

Chứng minh \(BP\perp AQ\)tương tự ta cũng chứng minh \(CQ\perp AP\)

\(\Rightarrow\)\(AO\perp PQ\)(O là giao điểm của BP và CQ). Tam giác ADE có AO là tia phân giác góc A và \(AO\perp DE\)

\(\Rightarrow\)Tam giác AED vuông cân ( đpcm )

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạBài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. a) CM: ABC vuông tại A. b) Tính các góc B,C và đường cao AH của tam giác. c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng...
Đọc tiếp

Các anh chị cho em hỏi gấp câu cuối 2 bài toán hình học khó lớp 9 ạ

Bài 1: Cho tam giác ABC có AB = 6cm, AC=4,5cm, BC=7.5cm. 
a) CM: ABC vuông tại A. 
b) Tính các góc B,C và đường cao AH của tam giác. 
c) Lấy M bất kì trên cạnh BC. Gọi hình chiếu của M trên AB, AC lần lượt là P và Q. 
Cm: PQ=AM. Hỏi M ở vị trí nào thì PQ có độ dài nhỏ nhất? 
d) Tìm tập hợp các điểm N sao cho diện tích tam giác ABC bằng diện tích tam giác NBC. 

Bài 1 giải giúp em câu d ạ. 

Bài 2: Cho tam giác ABC vuông tại A có AB=3cm, BC=5cm 
a) Giải tam giác ABC. 
b) Kẻ AK _I_ BC tại K, KD _I_ AB tại D, KE_I_AC tại E. 
Cmr: ADKE là hình chữ nhật. Tính độ dài DE. 
c) Cm: AD.AB=AE.AC và tam giác AED ~ ABC 
d) Gọi M là trđiểm của BC. Cmr: DE_I_AM. 
e) Gọi F là giao điểm của DK và AM. Tính S tứ giác ADFE. 

Bài 2 giải giúp em câu e ạ. 

Em xin cảm ơn.

0
30 tháng 9 2017

A N O M R S C

a, \(MS\perp BC;MR\perp AC\) ( gt ) nên \(\widehat{MSC}=\widehat{MRC}=90^o\)

Tam giác ABC có \(\widehat{C}=90^o\)( gt ) do đó \(\widehat{MSC}=\widehat{MRC}=\widehat{SCR}=90^o\)

Vậy tam giác cân ABC là hình tam giác ( vì có 3 góc )

P/s: Tham khảo nhé

2 tháng 6 2018

A B C D F E M

a) Ta thấy: \(\Delta\)ABC cân tại A có AD vuông góc BC => AD là trung trực của BC

Xét tứ giác ABDC: AD là trung trực của BC; BC là trung trực của AD

=> Tứ giác ABDC là hình thoi => AC//BD hay AC//DF => ^ACE=^DFC (So le trong)

Xét \(\Delta\)ACE và \(\Delta\)DFC: ^ACE=^DFC; ^EAC=^CDF (Vì tứ giác ABDC là h.thoi)

=> \(\Delta\)ACE ~ \(\Delta\)DFC (g.g) => \(\frac{AE}{DC}=\frac{AC}{DF}\)(*)

Lại có: Hình thoi ABDC có ^BAC=1200 => ^BAD=^CAD=600 => \(\Delta\)ABD là tam giác đều.

=> AB=BD=AD=AC=CD, thay DC=AC=AD vào (*) ta được: \(\frac{AE}{AD}=\frac{AD}{DF}\)

Xét \(\Delta\)EAD và \(\Delta\)ADF: \(\frac{AE}{AD}=\frac{AD}{DF};\)^EAD=^ADF (Do tam giác BAD đều)

=> \(\Delta\)EAD ~ \(\Delta\)ADF (c.g.c).

b) \(\Delta\)EAD ~ \(\Delta\)ADF (cmt) => ^AED=^DAF.

Dễ thấy ^AED là góc ngoài tam giác AEM => ^AED = ^EAM + ^EMA 

^DAF = ^DAB + ^EAM

Do đó ^DAB + ^EAM = ^EAM + ^EMA => ^DAB = ^EMA.

Mà ^DAB=600 => ^EMA=600 hay ^AMD=600.

Xét tứ giác ADBM: ^AMD=^ABD=600 => Tứ giác ADBM nội tiếp đường tròn.

c) Tứ giác ADBM nội tiếp đường tròn => Điểm M nằm trên đường tròn ngoại tiếp \(\Delta\)ABD (1)

Do \(\Delta\)ABD cố định => Đường tròn ngoại tiếp \(\Delta\)ABD cố định. (2)

Từ (1) và (2) => Điểm M di động trên đường tròn ngoại tiếp cố định của \(\Delta\)ABD.

Vậy khi điểm E di động trên AB thì điểm M luôn di động trên cung nhỏ AB của đường tròn ngoại tiếp \(\Delta\)ABD cố định.