K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

5 tháng 4 2018

Xét \(\Delta ABD\)và \(\Delta ACD\)có:

AB=AC (GT)

\(\widehat{BAD}=\widehat{CAD}\)(GT)

AD chung

\(\Rightarrow\Delta ABD=\Delta ACD\left(c.g.c\right)\)

\(\Rightarrow\hept{\begin{cases}BD=CD\\\widehat{ADB}=\widehat{ADC}\end{cases}}\)

=> AD là đường trung tuyến; AD \(\perp\)BC

=> D là trung điểm BC => BD=CD= \(\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)

Áp dụng định lý Pytago, ta tính được AD= \(\sqrt{5^2-4^2}=3\)

Ta tính được AI=\(\frac{2}{3}AD=\frac{2}{3}.3=2\left(cm\right)\); BI=\(\sqrt{BD^2+DI^2}=\sqrt{4^2+1^2}=\sqrt{17}\left(cm\right)\)

5 tháng 4 2018

=\(AD=3CM,AI=2CM,BI=\sqrt{17}\)

29 tháng 4 2018

1/

a/ Ta có AB < BC (5cm < 6cm)

=> \(\widehat{ACB}< \widehat{A}\)(quan hệ giữa góc và cạnh đối diện trong tam giác)

Mà \(\widehat{ACB}=\widehat{ABC}\)(\(\Delta ABC\)cân tại A)

=> \(\widehat{ABC}< \widehat{A}\)

b/ \(\Delta ADB\)và \(\Delta ADC\)có: AB = AC (\(\Delta ABC\)cân tại A)

\(\widehat{BAD}=\widehat{DAC}\)(AD là tia phân giác \(\widehat{BAC}\))

Cạnh AD chung

=> \(\Delta ADB\)\(\Delta ADC\)(c. g. c) (đpcm)

c/ Ta có \(\Delta ABC\)cân tại A

=> Đường cao AD cũng là đường trung tuyến của \(\Delta ABC\)

và G là giao điểm của hai đường trung tuyến AD và BE của \(\Delta ABC\)

=> CF là đường trung tuyến thứ ba của \(\Delta ABC\)

=> F là trung điểm AB (đpcm)

d/ Ta có G là giao điểm của ba đường trung tuyến AD, BE và CF của \(\Delta ABC\)

=> G là trọng tâm \(\Delta ABC\)

và D là trung điểm BC (vì AD là đường trung tuyến của \(\Delta ABC\))

=> \(BD=DC=\frac{BC}{2}=\frac{6}{2}=3\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADB\)vuông tại D, ta có: AD = 4cm (tự tính)

=> \(AG=\frac{2}{3}AD=\frac{2}{3}.4=\frac{8}{3}\)(cm)

Áp dụng định lý Pitago vào \(\Delta ADC\)vuông tại D, ta có:

\(BG=\sqrt{BD^2+GD^2}\)

=> \(BG=\sqrt{3^2+\left(\frac{8}{3}\right)^2}\)

=> \(BG=\sqrt{9+\frac{64}{9}}\)

=> \(BG=\sqrt{\frac{145}{9}}\)

=> BG \(\approx\)4, 01 (cm)

Bạn tự kẻ hình nhé .

a)Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là trung tuyến của \(\Delta ABC\)

Xét \(\Delta ABC\),có:

AD,BE là hai đường trung tuyến

O là giao điểm của AD và BE

\(\Rightarrow O\)là trọng tâm của \(\Delta ABC\)

b)Vì AD là trung tuyến của ​\(\Delta ABC\)

\(\Rightarrow D\)là trung điểm của BC

\(\Rightarrow BD=\frac{BC}{2}=\frac{8}{2}=4\left(cm\right)\)

​Vì AD là phân giác của \(\Delta ABC\)cân tại A

\(\Rightarrow AD\)là đường cao của \(\Delta ABC\)

Áp dụng định lí Pytago cho \(\Delta ABD\)vuông tại D ,có:

\(AD^2=AB^2-BD^2=5^2-4^2=9\)

\(\Rightarrow AD=\sqrt{9}=3\left(cm\right)\)

Vì O là trọng tâm của \(\Delta ABC\)

\(\Rightarrow OD=\frac{1}{3}AD=\frac{1}{3}.3=1\left(cm\right)\)

c)Để O là giao điểm của 3 đường phân giác của \(\Delta ABC\)

thì \(BE\)là phân giác của \(\Delta ABC\)

mà BE là đường trung tuyến của \(\Delta ABC\)

\(\Leftrightarrow\Delta ABC\)đều .​

5 tháng 7 2021

tui có chơi