Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
a/Ta có: ΔABC cân ở A(gt)
mà AM là đường trung tuyến, nên AM cũng là đường cao
Vậy AM ⊥ BC
b/ Vì M là trung điểm của BC
nên BM=BC:2=32:2=16 (cm)
Xét ΔABM vuông tại M có:
AB2=AM2+BM2 (Định lý Py-ta-go)
nên 342=AM2+162
1156=AM2+256
AM2=1156-256
AM2=900
Vậy AM=30 (cm)
a. Xét ΔAMB và ΔAMC, ta có:
AM = AC (gt)
BM = CM (gt)
AM cạnh chung
Suy ra: ΔAMB = ΔAMC (c.c.c)
Suy ra: ∠(AMB) = ∠(AMC) (1)
Lại có: ∠(AMB) + ∠(AMC) = 180o (hai góc kề bù) (2)
Từ (1) và (2) suy ra: ∠(AMB) = ∠(AMC) = 90o
Vậy AM ⊥ BC.
b. Tam giác AMB có ∠(AMB) = 90o
Áp dụng định lí Pi-ta-go vào tam giác vuông AMB, ta có:
AB2 = AM2 + BM2 ⇒ AM2 = AB2 - BM2 = 342 - 162
= 1156 - 256 = 900
Suy ra: AM = 30 (cm).
refer
a) Vì AH là đường trung tuyến của tam giác ABC cân tại A:
nên HB=HC
Xét tam giác AHB và tam giác AHC:
có:+AB=AC( tam giác ABC cân tại A)
+HB=HC(cmt)
+AH: cạnh chung
Vậy tam giác AHB=tam giác AHC(c.c.c)
b) Vì tam giác AHB=tam giác AHC(cmt)
nên: góc AHB=góc AHC=90 độ( 2 góc tương ứng )
c) HB=HC=BC2=102=5cmHB=HC=BC2=102=5cm
Áp dụng định lí Pytago vào tam giác ABH vuông tại H:
có: AB2=AH2+BI2AB2=AH2+BI2
hay:132=AH2+52132=AH2+52
⇒AH2=132−52⇒AH2=132−52
⇔AH=√132−52=12⇔AH=132−52=12
Vậy AH=12cm
a, Xét Δ AHB và Δ AHC, có :
AH là cạnh chung
AB = AC (Δ ABC cân tại A)
HB = HC (AH là đường trung tuyến của BC)
=> Δ AHB = Δ AHC (c.c.c)
b, Xét Δ ABC cân tại A, có :
AH là đường trung tuyến
=> AH là đường cao
=> \(\widehat{AHC}=\widehat{AHB}=90^o\)
c, đề kì dzậy
Tam giác ABC có AB = AC = 13 cm nên tam giác ABC cân tại A
Suy ra: đường trung tuyến AM cũng là đường cao.
Suy ra: AM ⊥ BC
Ta có: MB = MC = 1/2 BC = 1/2 .10 = 5 (cm)
Trong tam giác vuông AMB có ∠(AMB) = 90o
Áp dụng định lý Pitago ta có:
AB2 = AM2 + MB2
Suy ra: AM2 = AB2 - MB2
= 132 - 52 = 169 - 25 = 144
Vậy AM = 12(cm)
M 13CM 13cm 10cm A B C
Tam giác ABC có AC=AB=13cm nên tam giác ABC cân tại A
=>đường trung tuyến của AM cũng là đường cao
=>AM \(\perp BC\)
Ta có MB=MC=1/2BC=1/2.10=5(cm)
Trong tam giác vuông AMB có góc vuông AMB=\(90^0\)
Áp dụng định lý Pitago ta có:
\(AB^2=AM^2+MB^2\)
=>\(AM^2=ÂB^2-MB^2\)
=\(13^2-5^2=169-25=144\)
Vậy AM=12 (cm)
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm. Chọn D
Tam giác ABC cân tại A, AM là đường trung tuyến đồng thời là đường cao.
Áp dụng định lí Pytago trong tam giác vuông ABM có:
BM^2=AB^2-AM^2=10^2-6^2=64=>AM=8cm.
Chọn D
Tam giác ABC cân tại A nên AM đồng thời là đường cao và M là trung điểm của BC
Khi đó ta có BM2 = AB2 - AM2 = 102 - 82 = 36 ⇒ BM = 6cm.
⇒ BC = 6.2 = 12cm. Chọn A
Trong tam giác cân đường trung tuyến đồng thời là đường cao
\(BM=\dfrac{1}{2}BC=5cm\)
Áp dụng định lí Pytago vào tam giác vuông AMB, ta có:
\(AM=\sqrt{AB-BM}=\sqrt{13^2-5^2}=12cm\)
BN KO TRẢ LỜI THÌ THÔI BN ĐỪNG CÓ BL LINH TINH