Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.
*Hình của mình có thể không đẹp lắm! Thông cảm ^_^ *
a, +,Xét 2 tam giác vuông AEC và ADB ta có
A: góc chung
góc AEC= góc ADB (=90 độ)
=> Tam giác AEC= tam giác ADB
=> AD=AE
b,+,Vì tam giác AEC= tam giác ADB nên: góc ABD= góc ACE.
+,Ta có: ABC= ABD+DBC
ACB= ACE+ECB
mà ABC= ACB, ABD=ACE nên DBC= ECB.
+,Vì góc DBC= góc ECB nên tam giác BIC cân tại I --> BI=CI.
+,Xét tam giác ABI và tam giác ACI có:
AB=AC
góc ABI= góc ACI
BI=CI
=> tam giác ABI= tam giác ACI
=> góc BAI= góc CAI
=> AI là phân giác của BAC. (1)
c, +,Ta có: góc AED= 180 độ- góc A/ 2
góc ABC= 180 độ- góc A/ 2
=> AED=ABC (vị trí đồng vị)
=> DE//BC.
d, +,Ta có tam giác ABC cân mà M là trung điểm BC nên AM vừa là đường trung tuyến vừa là đường phân giác (2)
+,Từ (1) và (2) suy ra: A,I,M thẳng hàng.
*Mình không biết là đúng hay không, có gì bạn bảo mình nha!*
*Phần e mình không biết làm, thông cảm xíu ^_^ *
Tự vẽ hình nha bạn!
Cm:
a)Xét \(\Delta ABD\) và \(\Delta ACE\)có:
\(\widehat{ADB}=\widehat{AEC}=90\)độ
\(\widehat{A}\)chung
AB=AC (gt)
\(\Rightarrow\Delta ABD=\Delta ACE\)(cạnh huyền-góc nhọn)
=> AD=AE (2 cạnh tương ứng)
(ĐPCM)
b) Vì AD=AE(cmt) =>\(\Delta ADE\)cân tại A
=> \(\widehat{AED}=\widehat{ADE}\)
\(\Delta ADE\)có: \(\widehat{A}+\widehat{AED}+\widehat{ADE}=180\)độ
\(\Rightarrow\widehat{AED}=\frac{180^0-\widehat{A}}{2}\)(1)
\(\Delta ABC\)cân tại A => \(\widehat{ABC}=\widehat{ACB}\)
\(\Delta ABC\)có: \(\widehat{A}+\widehat{ABC}+\widehat{ACB}=180^0\)
\(\Rightarrow\widehat{ABC}=\frac{180^0-\widehat{A}}{2}\)(2)
Từ (1) và (2) => \(\widehat{AED}=\widehat{ABC}\left(=\frac{180^0-\widehat{A}}{2}\right)\)
Mà 2 góc này ở vị trí đồng vị
=>DE//BC (đpcm)
c) Xét \(\Delta AIE\)và \(\Delta AID\)có:
\(\widehat{AEI}=\widehat{ADI}=90^0\)
AI chung
AE=AD (cmt)
=> \(\Delta AIE\)=\(\Delta AID\)(cạnh huyền-cạnh góc vuông)
=> \(\widehat{EAI}=\widehat{DAI}\)(2 góc tương ứng)
=> AI là tia phân giác của góc BAC (3)
Xét \(\Delta ABM\)và \(\Delta ACM\)có:
AM chung
BM=CM (gt)
AB=AC (gt)
=>\(\Delta ABM\)=\(\Delta ACM\)(c.c.c)
=>\(\widehat{BAM}=\widehat{CAM}\)(2 góc tương ứng)
=>AM là tia phân giác của góc BAC (4)
Từ (3) và (4) => A,I,M thẳng hàng (đpcm)
Câu d tớ chịu!
a: Xét ΔADB vuông tại Dvà ΔAEC vuông tại E có
AB=AC
góc BAD chung
=>ΔADB=ΔAEC
=>AD=AE
b: Xét ΔAEI vuông tại E và ΔADI vuông tại D có
AI chung
AE=AD
=>ΔAEI=ΔADI
=>góc EAI=góc DAI
=>AI là phân giác của góc BAC
c: Xét ΔABC có AE/AB=AD/AC
nên ED//BC
d: AB=AC
IB=IC
=>AI là trung trực của BC
=>A,I,M thẳng hàng
a, Xét △BAD vuông tại D và △CAE vuông tại E
Có: AB = AC (△ABC cân tại A)
BAC là góc chung
=> △BAD = △CAE (ch-gn)
=> AD = AE (2 cạnh tương ứng)
b, Xét △IAE vuông tại E và △IAD vuông tại D
Có: AE = AD (cmt)
AI là cạnh chung
=> △IAE = △IAD (ch-cgv)
=> IAE = IAD (2 góc tương ứng)
=> AI là phân giác EAD
=> AI là phân giác BAC
c, Vì AE = AD (cmt) => △ADE cân tại A => AED = (180o - EAD) : 2
Vì △ABC cân tại A => ABC = (180o - BAC) : 2
=> AED = ABC
Mà 2 góc này nằm ở vị trí đồng vị
=> ED // BC (dhnb)
d, Xét △BAM và △CAM
Có: AB = AC (cmt)
BM = MC (gt)
AM là cạnh chung
=> △BAM = △CAM (c.c.c)
=> BAM = CAM (2 góc tương ứng)
=> AM là phân giác BAC
Mà AI cũng là phân giác BAC
=> AM ≡ AI
=> 3 điểm A, I, M thẳng hàng
a) Xét 2 tg vuông AEC và ADB có: AB = AC (vì tam giác ABC cân tại A)
góc A chung
Do đó tg AEC = tg ADB (ch - gn)
=> BD = CE (đpcm)
b) xét 2 tg vuông CEB và BDC có: góc CBE = góc BCD (tam giác ABC cân tại A)
CE = BD (Cmt)
do đó tg CEB = tg BDC (cgv - gnk)
=> góc ECB = góc DBC
=> tam giác BIC cân tại I (đpcm)
c) xét 2 tg AIC và AIB có: AC = AB (tam giác ABC cân tại A)
AI chung
BI = IC (tam giác BIC cân (Cmt))
DO đó tg AIC = tg AIB (c.c.c)
=> góc IAC = góc IAB => AI là tia pg của góc BAC (Đpcm)
d) Ta có: tg CEB = tg BDC (cmt) => CD = BE mà AB = AC => AE = AD => AED cân tại A
Mà AI là tia pg của góc EAD nên AI vuông với DE(1)
Ta lại có: Tam giác ABC cân tại A mà AI là tia pg của góc BAC nên AI vuông BC (2)
Từ (1) và (2) suy ra DE // BC (cùng vuông vs BC) (đpcm)
e) ko bt
F) cm vuông như câu d nha
a: Xét ΔABD vuông tại D và ΔACE vuông tại E có
AB=AC
\(\widehat{BAD}\) chung
Do đó:ΔABD=ΔACE
Suy ra:BD=CE
b: Xét ΔABC có AD/AB=AE/AC
nên DE//BC
c: Xét ΔEBC vuông tại E và ΔDCB vuông tại D có
BC chung
EC=BD
Do đó: ΔEBC=ΔDCB
Suy ra: \(\widehat{ICB}=\widehat{IBC}\)
=>ΔIBC cân tại I
=>IB=IC
hay I nằm trên đường trung trực của BC(1)
ta có: AB=AC
nên A nằm trên đường trung trực của BC(2)
Ta có: MB=MC
nên M nằm trên đường trung trực củaBC(3)
Từ (1), (2) và (3) suy ra A,I,M thẳng hàng