K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

8 tháng 1 2017

A B C M D E F Xét tam giác DMC có:

F trung điểm MD

E trung điểm DC

=> EF là đường TB mà MC là cạnh đáy

=> EF // MC hay EF // BC (1)

Lại có tam giác ABC cân vì AB = BC, có AM trung tuyến => AM là đường cao => AM _|_ BC (2)

Từ (1) và (2) => EF _|_ AM

Xét tam giác AME có:

MD và EF là đường cao

\(MD\)\(\cap\)EF \(=\left\{F\right\}\)

=> F là trực tâm => AF đường cao => AF _|_ ME (3)

Xét tam giác BDC có:

M trung điểm BC

E trung điểm DC

=> ME là đường TB mà BD là cạnh đáy

=> ME = BD (4)

Từ (3) và (4) => AF _|_ BD (đpcm)

Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                   ...
Đọc tiếp

Cho tam giác ABC vuông tại A trung tuyến AM kẻ MD vuông góc với AB , D thuộc AB ; MH vuông góc với AB , H thuộc AC ; E là trung điểm đối xứng với M qua D                                                                                                        a) Chứng minh : Tứ giác ADMH là hình chữ nhật                                                                                                    B) Chứng minh : Tứ giác AMBE là hình thoi                                                                                                                C) Gọi I là giao điểm của AM và DH , chứng minh ba điểm C;I;E thẳng hàng

1

a: góc ADM=góc AHM=góc DAH=90 độ

=>ADMH là hình chữ nhật

b: Xét ΔACB có

M là trung điểm của BC

MD//AC

=>D là trung điểm của AB

Xét tứ giác AMBE có

D là trung điểm chung của AB và ME

=>AMBE là hình bình hành

mà MA=MB

nên AMBE là hình thoi

c:ADMH là hcn

=>I là trung điểm chung của AM và DH

Xét tứ giác ACME có

ME//AC

ME=AC

=>ACME là hbh

mà I là trung điểm của AM

nên i là trung điểm của CE

=>C,I,E thẳng hàng

19 tháng 12 2022

a: \(BC=\sqrt{6^2+8^2}=10\left(cm\right)\)

\(S_{ABC}=\dfrac{1}{2}\cdot6\cdot8=24\left(cm^2\right)\)

b: Xét tứ giác ADME có

góc ADM=góc AEM=góc DAE=90 độ

nên ADME là hình chữ nhật

c: Xét ΔABC có

M là trung điểm của BC

ME//AB

Do đó E là trung điểm của AC

Xét ΔABC có

M là trung điểm của BC

MD//AC

Do đó: D là trung điểm của AB

=>ME//BD và ME=BD

=>MEDB là hình bình hành

=>MD cắtEB tại trung điểm của mỗi đường

=>B,K,E thẳng hàng

a: Xét tứ giác AKMH có 

\(\widehat{AKM}=\widehat{AHM}=\widehat{KAH}=90^0\)

Do đó: AKMH là hình chữ nhật

b: Xét tứ giác BMKH có

MK//BH

MK=BH

Do đó: BMKH là hình bình hành

Suy ra: BK và MH cắt nhau tại trung điểm của mỗi đường

mà E là trung điểm của MH

nên E là trung điểm của BK

=>B,E,K thẳng hàng

14 tháng 1 2022

ko có câu c hả bn