K
Khách

Hãy nhập câu hỏi của bạn vào đây, nếu là tài khoản VIP, bạn sẽ được ưu tiên trả lời.

27 tháng 3 2021

\(\Delta:2x+y-1=0\)

Gọi \(C=\left(0;m\right)\) thuộc trục tung.

Ta có \(d\left(C;\Delta\right)=3d\left(B;\Delta\right)\)

\(\Leftrightarrow\dfrac{5\left|2.1+2.1-1\right|}{\sqrt{2^2+1^2}}=\dfrac{\left|2.0+1.m-1\right|}{\sqrt{2^2+1^2}}\)

\(\Leftrightarrow\left|m+1\right|=15\)

\(\Leftrightarrow\left[{}\begin{matrix}m=14\\m=-16\end{matrix}\right.\)

\(\Rightarrow\left[{}\begin{matrix}C=\left(0;14\right)\left(\text{loại do cùng phía với }\Delta\right)\\C=\left(0;-16\right)\end{matrix}\right.\)

\(\Rightarrow C=\left(0;-16\right)\)

Lấy B' đối xứng với B qua \(\Delta\), M là giao điểm của BB' và \(\Delta\)

BB' có phương trình: \(x-2y+3=0\)

M có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}2x+y-1=0\\x-2y+3=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{1}{5}\\y=\dfrac{7}{5}\end{matrix}\right.\Rightarrow M=\left(-\dfrac{1}{5};\dfrac{7}{5}\right)\)

\(\Rightarrow B'=\left(-\dfrac{7}{5};\dfrac{4}{5}\right)\)

AC có phương trình \(\dfrac{x}{0+\dfrac{7}{5}}=\dfrac{y+16}{-16-\dfrac{4}{5}}\Leftrightarrow84x+7y+112=0\)

A có tọa độ là nghiệm hệ \(\left\{{}\begin{matrix}84x+7y+112=0\\2x+y-1=0\end{matrix}\right.\Leftrightarrow\left\{{}\begin{matrix}x=-\dfrac{17}{10}\\y=\dfrac{22}{5}\end{matrix}\right.\Rightarrow A\left(-\dfrac{17}{10};\dfrac{22}{5}\right)\)

ko biết

1 tháng 5 2020

ko biết thua

10 tháng 4 2020

hello

10 tháng 4 2020

hello

1 tháng 5 2020

Cô xóa giúp em câu kia với ạ! Tọa độ đỉnh\(B\left(\frac{32}{17};\frac{49}{17}\right)\)và C\(\left(-\frac{8}{17};\frac{6}{17}\right)\)

Gọi đường phân giác AD: x+y-3=0, đường trung tuyến BM: x-y+1=0 và đường cao CH: 2x+y+1=0

Mà A \(\in\)AD => \(A\left(a;3-a\right);B\in BM\Rightarrow B\left(b;b+1\right);C\in CH\Rightarrow C\left(c;-2c-1\right)\)

Có M là trung điểm AC nên M\(\left(\frac{a+c}{2};\frac{2-a-2c}{2}\right)\)

Mà M\(\in\)BM nên thay vào phương trình BM ta có: \(\frac{a+c}{2}-\frac{2-a-2c}{2}+1=0\Leftrightarrow2a+3c=0\left(1\right)\)

Ta có: \(\overrightarrow{AB}=\left(b-a;a+b-2\right)\)do \(AB\perp\)CH => \(\overrightarrow{AB}\cdot\overrightarrow{u_{CH}}=0\Leftrightarrow3a+b=4\left(2\right)\)

Trong đó \(\overrightarrow{u_{CH}}\)=(1;-2) là một vecto chỉ phương của đường cao CH

Gọi I là giao của BM và AD. Nhận thấy AD _|_BM tại I nên I là trung điểm của BM

Do đó \(I\left(\frac{a+2b+c}{4};\frac{-a+2b-2c+4}{4}\right)\)mà I\(\in\)AD => 4b-c=8(3)

Từ (1)(2)(3) ta có \(a=\frac{12}{17};b=\frac{32}{17};c=\frac{-8}{17}\)

Kết luận \(A\left(\frac{12}{17};\frac{39}{17}\right),B\left(\frac{32}{17};\frac{49}{17}\right),C\left(\frac{-8}{17};\frac{6}{17}\right)\)

30 tháng 4 2020

Lần sau em đăng vào học 24 nhé!

Hướng dẫn: 

Gọi BM là đường trung tuyến kẻ từ B; AD là phân giác kẻ từ A; CH là đường cao kẻ từ C 

A ( a; 3 - a); C ( c: -2c -1 ) 

Có M là trung điểm AC => M ( a+c/2 ; 2-a-2c/2)

=> Gọi I là giao điểm của AD và BM => chứng minh I là trung điểm BM

=> tìm đc tọa độ B theo a và c

Mà B thuộc MB => thay vào có 1 phương trình theo ẩn a và c

Lại có: AB vuông CH => Thêm 1 phương trình theo a và c 

=> Tìm đc a, c => 3 đỉnh

22 tháng 3 2017

A B C M N E H

goi B(a; b) N( c; d)

\(N\in\left(CN\right)\Rightarrow\)c+8d-7 = 0(1)

N la trung diem AB\(\Rightarrow2c=1+a\left(2\right)\)

2d = -3 +b (3)

B\(\in\left(BM\right)\)\(\Rightarrow\)a+b -2 =0 (4)

tu (1) (2) (3) (4) \(\Rightarrow a=-5;b=7\Rightarrow B\left(-5;7\right)\)

dt (AE) qua vuong goc BM. \(\Rightarrow pt\)(AE):x-y-4 = 0

tọa độ H \(\left\{{}\begin{matrix}x-y-4=0\\x+y-2=0\end{matrix}\right.\Rightarrow H\left(3;-1\right)\);H là trung điểm AE

\(\Rightarrow E\left(5;1\right)\). ​vì ptdt (BE) cung la ptdt qua (BC):

3x+5y-20 =0

tọa độ C là nghiệm hệ \(\left\{{}\begin{matrix}3x+5y-20=0\\x+8y-7=0\end{matrix}\right.\Rightarrow\left\{{}\begin{matrix}\dfrac{139}{21}\\\dfrac{1}{21}\end{matrix}\right.\)

\(\Rightarrow C\left(\dfrac{139}{21};\dfrac{1}{21}\right)\)

2 tháng 4 2022

Gợi ý : Viết ptđt AB và AC